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1. GENERAL INTRODUCTION  
 

1.1 SCHIZOPHRENIA 

Schizophrenia is the name for a multifaceted psychiatric disease that affects around 1% of the 

population worldwide (Jablensky et al, 1992). The diagnosis schizophrenia is made according 

to the leading classification systems DSM-IV (AmericanPsychiatricAssociation, 2000) and 

ICD-10 (WorldHealthOrganization, 1992) and is exclusively based on the clinical appearance 

of the patients. Two main types of symptoms reflect the psychotic disturbances: positive 

symptoms including hallucinations or delusions and negative symptoms as apathy, lack of 

emotion or social withdrawal. Additional cognitive deficits are accompanying the disease. 

These and other mild behavioral abnormalities may already be present in childhood but the 

general characteristics of the disease appear in young adulthood (Erlenmeyer-Kimling, 2001). 

Because of the early onset and the pervasiveness of associated deficits, the disease places a 

substantial burden on the patients, their families and society. It is among the top ten leading 

causes of disease-related disability in the world (Murray and Lopez, 1996); alone the costs for 

schizophrenia in the US in 2002 were estimated to be $62.7 billion (McEvoy, 2007).  

Though there is no cure for schizophrenia, since the mid-1950s a variety of treatment options 

are available. The main treatment is antipsychotic medication that helps to normalize the 

biochemical imbalance that is thought to contribute to schizophrenia (Stephan et al, 2006). 

These drugs primarily work by suppressing dopamine activity and are effective in treating the 

positive symptoms (Freedman, 2003). Unfortunately, this treatment has only limited efficacy 

on negative symptoms and cognitive deficits (Carpenter, 2004; Keefe et al, 2007), which 

appear to have the main impact on the quality of life of the patients (Hyman and Fenton, 

2003). 

The underlying biological mechanisms for this complex brain disease with 

neurodevelopmental origin (Rapoport et al, 2005) are far from clear. Evidence suggests a 

complex interplay between a genetic predisposition and environmental conditions during pre- 

and postnatal development. In a recent review by Jim van Os and colleagues (van Os et al, 

2010) developmental trauma, a minority group position, growing up in an urban environment 

and cannabis use have been reported to have a predisposing impact on the developing brain. 

Most probably complex gene x environment interactions lead finally to a syndrome that we 

call schizophrenia in our days.  
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Although cognition is not a component of the DSM-IV/ICD-10 criteria, it is undisputable that 

cognitive deficits are the core of the disease (Elvevag and Goldberg, 2000). They have been 

already considered in the earliest descriptions of schizophrenia by Kraepelin as 'dementia 

praecox' in the late 19th century (Kraepelin, 1919). The majority (Palmer et al, 1997), if not all 

(Keefe et al, 2005) schizophrenic patients suffer from these neuropsychological 

abnormalities, mainly seen in the domains of attention, memory and executive functions 

(Kuperberg and Heckers, 2000). The biological brain correlate is most probably a widespread 

dysfunction within a network of brain areas involving the frontal and temporal cortex, 

hippocampus and subcortical regions (Kuperberg and Heckers, 2000). Interestingly these 

deficits are mainly independent of the disease and treatment state (Gold et al, 1999) and are 

visible even before the onset of the first psychotic episode (Reichenberg et al, 2002). 

Furthermore healthy twins and relatives from affected people show slight abnormalities when 

compared to healthy controls (Cannon et al, 2000; Snitz et al, 2006), leading to the question 

whether there is shared genetic liability (Toulopoulou et al, 2010). Moreover cognitive 

deficits are among the best predictors for the disease outcome and quality of life (Addington 

and Addington, 1999; Green, 1996). Taken together, impaired cognition is one of the most 

prominent phenotypes in schizophrenia research (e.g. Burdick et al, 2009; Gottesman and 

Gould, 2003). 

1.2 GENETICS OF SCHIZOPHRENIA 

There is no doubt a strong genetic component to schizophrenia, which has been proven by 

twin, family and adoption studies. Recent estimates for the heritability are ~80 % (Sullivan et 

al, 2003) which leaves space for a significant proportion of environmental influences. The 

risk genes that are discussed are multivariate; in addition, the suggested candidate genes have 

not been consistently replicated across or even within populations (e.g. Sanders et al, 2008). 

The recent genome-wide association (GWAS) and copy number variation (CNV) studies have 

provided important evidence suggesting a role of both, common and rare variants in 

schizophrenia genesis (for review see Tiwari et al, 2010). The most consistent observations 

among these studies are the association of genetic markers in the major histocompatibility 

complex (MHC) on chromosome 6p22.1 and an excess of rare variants in patients with 

schizophrenia. Despite the increasing knowledge in genetics, we have not learned a lot about 

biological correlates so far. The understanding of the underlying biological mechanisms 

would be a major step forward to developing novel and maybe even individualized treatments 

for this heterogeneous group of patients. 
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1.3 GRAS 

To get a better understanding of the biological grounds of schizophrenia and to find out how 

common genetic variants contribute to the phenotype, the Göttingen Research Association of 

Schizophrenia was founded in 2005 (Ribbe et al, 2010). Until 2008, an invariant team of 

physicians and psychologists traveled throughout Germany and examined more than 1000 

patients diagnosed with schizophrenia according to DSM-IV. The acquired dataset includes 

biographic and family information, disease history, treatments, environmental risk factors, 

comorbidities, and additionally results of neuropsychological, psychopathological, and 

neurological examinations. With more than 3000 data points / patient, we have a very 

comprehensive unique phenotypical database that is ideally suited for phenotype-based 

genetic association studies (PGAS). 

 

1.4 AIM OF THIS WORK 

Starting with my project in 2008, I had the opportunity to conduct the first genetic analyses 

within our GRAS database. The goal was to start where other groups ended. The idea is not 

only to do a case-control study comparing the genotypes in our schizophrenic population with 

healthy controls based on endpoint diagnosis but perform comprehensive, hypothesis driven 

phenotype-based genetic association studies to see how specific common genetic variants 

contribute to the phenotype. Moreover we tried to find out how these variants influence the 

biological system e.g. the expression of the respective RNA or protein or the function. The 

two already concluded studies shown here, focus on genetic modifiers of cognition and are the 

first of this kind in the field. 
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2. CPLX2 POLYMORPHISMS MODIFY COGNITIVE PERFORMANCE IN 
SCHIZOPHRENIA 

2.1 OVERVIEW OF PROJECT I 
 

Dysfunction and disruption of functional synaptic connectivity have been proposed to play a 

key role in schizophrenia (Owen et al, 2005). Having in mind that neurotransmitter release is 

the fastest and most tightly regulated fusion event, a putative molecular mechanism might 

involve abnormalities of proteins participating in the presynaptic secretory machinery (Sawa 

and Snyder, 2002), among them are complexins (CPLXs). 

 

CPLXs are a family of four small (134-160 aa) highly charged proteins that are highly 

conserved among mammals (McMahon et al, 1995). They are essential for the regulation of 

synaptic transmitter release by controlling assembly and stability of exocytotic SNARE 

complexes and thereby influence synaptic signaling, synaptic plasticity, and neuronal network 

function (for review see Brose, 2008a). 

 

While CPLX2 is also detectable in non-neuronal tissue, CPLX1 is specifically expressed in 

the central nervous system (McMahon et al, 1995). In the brain, the two isoforms show an 

overlapping expression pattern; many neurons express both proteins, albeit at different levels 

(Reim et al, 2001; Reim et al, 2005). CPLX3/4 are predominantly expressed at ribbon 

synapses in the retina (Reim et al, 2005). 

 

Genetic removal of complexins in mammalian cells leads to a strong reduction in evoked 

neurotransmitter release (Huntwork and Littleton, 2007; Reim et al, 2001). That is why 

altered expression of complexins is thought to be involved in several diseases. In post mortem 

studies of e.g. Huntington's (Morton et al, 2001), Parkinson's (Basso et al, 2004), Alzheimer's 

(Tannenberg et al, 2006) diseases and schizophrenia (e.g. Eastwood and Harrison, 2005), 

altered levels of complexins were detected in the brain (for review see Brose, 2008b).  

 

Especially for schizophrenia there are a number of reports available describing mRNA and 

protein changes for CPLX1 and CPLX2 in brain regions highly affected in this disease (e.g. 

dorsolateral prefrontal cortex, superior temporal cortex, and certain regions of the 

hippocampus). Overall the results point to a decreased mRNA expression of complexins in 

schizophrenia (Brose, 2008b). Along this line, a systematic transcriptome analysis showed 

 



 PROJECT I  5

that many mRNAs coding for synaptic proteins are decreased in schizophrenic patients 

(Mirnics et al, 2001).  

 

These results strengthen the hypothesis for schizophrenia as a disease of the synapse, but 

leaving the question whether complexins have a causal role in the etiology or they just 

contribute to the corresponding symptoms unanswered. CPLX1 and 2 expression changes 

were indeed found to be associated with cognitive deficits (Sawada et al, 2005). Behavioral 

consequences have been studied as well in different genetic mouse models. Cplx1 null mutant 

mice show severe ataxia, but do not have a clear cognitive phenotype (Drew et al, 2007). 

Cplx2 null mutants behave substantially normal, show only slight motor abnormalities and 

disputable results regarding cognition (Glynn et al, 2003; Glynn et al, 2007; Yamauchi et al, 

2005). Genetic association studies in human population have been contradictory (Kishi et al, 

2006; Lee et al, 2005) but showing rather no association with schizophrenia. 

 

Based on these findings we analyzed genetic variability in the CPLX2 gene in the GRAS 

cohort. We hypothesized that the common variants found are not associated with 

schizophrenia itself but rather showing a modulatory influence on the cognitive phenotype. In 

addition we aimed to understand the underlying biological reasons, (i) modeling similar 

cognitive behavior in Cplx2 null mutant mice and (ii) conducting in vitro expression studies. 

 

Taken the results together we can conclude that CPLX2 has a modifier role in cognition in 

situations of additional challenge, which holds true for both mouse and man. Interestingly, 

these findings are due to a lower expression of the protein, in humans modulated by a 

common genetic variant in the 3'UTR of the gene interacting with a miRNA. 
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2.2 ORIGINAL PUBLICATION 
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Radyushkin KA, El-Kordi A, Benseler F, Hannke K, Sperling S, Schwerdtfeger D, 

Thanhauser I, Gerchen MF, Ghorbani M, Gutwinski S, Hilmes C, Leppert R, Ronnenberg A, 

Sowislo J, Stawicki S, Stodtke M, Szuszies C, Reim K, Riggert J, Eckstein F, Falkai P, 

Bickeboller H, Nave KA, Brose N, Ehrenreich H (2010). Modification of Cognitive 

Performance in Schizophrenia by Complexin 2 Gene Polymorphisms. Arch Gen Psychiatry 

67(9), 879-888. 
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expression study in PBMCs. For these parts of the paper I was responsible for the design of 

the experiments and conducted the statistical analysis. Additionally, I was involved in the 

interpretation of all results, review of the literature, and in manuscript preparation, writing and 

revision. 

 

 
 
 
 
 
 
 

 



ORIGINAL ARTICLE

Modification of Cognitive Performance
in Schizophrenia by Complexin 2 Gene Polymorphisms
Martin Begemann, MD*; Sabrina Grube, MSc*; Sergi Papiol, PhD; Dörthe Malzahn, PhD; Henning Krampe, PhD;
Katja Ribbe, MSc; Heidi Friedrichs, MSc; Konstantin A. Radyushkin, PhD; Ahmed El-Kordi, MSc; Fritz Benseler, BA;
Kathrin Hannke, BA; Swetlana Sperling, BA; Dayana Schwerdtfeger, BA; Ivonne Thanhäuser, BA;
Martin F. Gerchen, BSc; Mohammad Ghorbani, MD; Stefan Gutwinski, MD; Constanze Hilmes, MD;
Richard Leppert, MD; Anja Ronnenberg, BA; Julia Sowislo, BSc; Sabina Stawicki, PhD; Maren Stödtke, MD;
Christoph Szuszies, MD; Kerstin Reim, PhD; Joachim Riggert, MD; Fritz Eckstein, PhD; Peter Falkai, MD;
Heike Bickeböller, PhD; Klaus-Armin Nave, PhD; Nils Brose, PhD; Hannelore Ehrenreich, MD, DVM

Context: Schizophrenia is the collective term for a hetero-
geneous group of mental disorders with a still obscure
biological basis. In particular, the specific contribution
of risk or candidate gene variants to the complex schizo-
phrenic phenotype is largely unknown.

Objective: To prepare the ground for a novel “phenom-
ics” approach, a unique schizophrenia patient database
was established by GRAS (Göttingen Research Associa-
tion for Schizophrenia), designed to allow association of
genetic information with quantifiable phenotypes. Be-
cause synaptic dysfunction plays a key role in schizo-
phrenia, the complexin 2 gene (CPLX2) was examined
in the first phenotype-based genetic association study
(PGAS) of GRAS.

Design: Subsequent to a classic case-control approach,
we analyzed the contribution of CPLX2 polymorphisms
to discrete cognitive domains within the schizophrenic
population. To gain mechanistic insight into how cer-
tain CPLX2 variants influence gene expression and func-
tion, peripheral blood mononuclear cells of patients, Cplx-
null mutant mice, and transfected cells were investigated.

Setting: Coordinating research center (Max Planck In-
stitute of Experimental Medicine) and 23 collaborating
psychiatric centers all over Germany.

Participants: One thousand seventy-one patients with
schizophrenia (DSM-IV) examined by an invariant in-

vestigator team, resulting in the GRAS database with more
than 3000 phenotypic data points per patient, and 1079
healthy control subjects of comparable ethnicity.

Main Outcome Measure: Cognitive performance in-
cluding executive functioning, reasoning, and verbal learn-
ing/memory.

Results: Six single-nucleotide polymorphisms, distrib-
uted over the whole CPLX2 gene, were found to be highly
associated with current cognition of schizophrenic sub-
jects but only marginally with premorbid intelligence. Cor-
respondingly, in Cplx2-null mutant mice, prominent cog-
nitive loss of function was obtained only in combination
with a minor brain lesion applied during puberty, mod-
eling a clinically relevant environmental risk (“second
hit”) for schizophrenia. In the human CPLX2 gene, 1 of
the identified 6 cognition-relevant single-nucleotide poly-
morphisms, rs3822674 in the 3� untranslated region, was
detected to influence microRNA-498 binding and gene
expression. The same marker was associated with dif-
ferential expression of CPLX2 in peripheral blood mono-
nuclear cells.

Conclusions: The PGAS allows identification of marker-
associated clinical/biological traits. Current cognitive per-
formance in schizophrenic patients is modified by CPLX2
variants modulating posttranscriptional gene expression.

Arch Gen Psychiatry. 2010;67(9):879-888

D ETAILED KNOWLEDGE OF

the complex gene-envi-
ronment interactions un-
derlying the etiology and
pathogenes is of the

schizophrenias1 is required to under-
stand the causes of the disease and to es-
tablish causal therapies. However, the
search for genetic markers of vulnerabil-
ity for schizophrenia has been hampered
by extensive interfering effects of patient
heterogeneity and environmental fac-

tors.2 Indeed, many of the numerous ge-
netic association studies have yielded
poorly reproducible data, likely because
corresponding patient cohorts were too
small and/or too heterogeneous with re-
gard to clinical characteristics. One way
to circumvent the problems that are posed
by the lack of exact phenotyping in the
available schizophrenia samples, and thus
confound genetic studies, is to analyze
large patient cohorts. Three recent stud-
ies of this type3-5 showed that several com-

Author Affiliations are listed at
the end of this article.
*Indicates co-primary
authorship.
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mon genetic variations contribute to the risk of schizo-
phrenia, but the functional consequences of these
variations are still completely unknown.

In the present study, we opted for an alternative ap-
proach to study genetic causes of the schizophrenic phe-
notype: a phenotype-based genetic association study
(PGAS). This approach is different from and comple-
mentary to the genome-wide association studies on schizo-
phrenia as a disease. With the PGAS, we are not looking
for major disease genes in schizophrenia because such
genes may not exist. Rather than searching for schizo-
phrenia genes, we seek to learn more about the contri-
bution of genetic variants of certain candidate genes to
the schizophrenic phenotype. Obviously, traits of inter-
est in schizophrenia can never be explained only by a
single modifier gene. However, a particular gene may co-
determine (with other trait-relevant genes) the out-
come of an individual with schizophrenia.

Based on the assumption that valuable information about
relevant genetic disease mechanisms can be obtained by
association studies on patient cohorts of at least 1000 pa-
tients, if performed on very detailed clinical data sets and
quantifiable biological readouts of schizophrenia rather than
the end point diagnosis in comparison with healthy con-
trols, we generated a new schizophrenia patient database,
the GRAS (Göttingen Research Association for Schizophre-
nia) data collection. For this purpose, 1071 patients with
schizophrenia were recruited between July 21, 2005, and
July 7, 2008, by one and the same team of traveling inves-
tigators in a cross-sectional field study, consisting of 23 Ger-
man psychiatric hospitals (listed in the supplementary Ap-
pendix; http://www.archgenpsychiatry.com). The
corresponding data set includes biographical and family in-
formation, disease history, environmental risk factors, co-
morbidities, treatments, and the results of cross-sectional
psychopathological, neuropsychological, and neurologi-
cal examinations. With more than 3000 data points per sub-
ject, this unique database of living patients, who are ac-
cessible for follow-up studies, provides a comprehensive
and standardized phenotype characterization of as yet un-
precedented detail.

Neurocognitive impairments, including deficits in ex-
ecutive functions, attention, and memory, are core symp-
toms of schizophrenia and the main cause of disease-
related disability.6 With regard to these and other
schizophrenia symptoms, synaptic dysfunctions and dis-
ruptions of functional synaptic connectivity have been
proposed to play a key role, and some authors even call
schizophrenia a disease of the synapse.7-9 Numerous re-
ports have implicated genes encoding synaptic proteins
in the etiology of schizophrenia.10,11 Postmortem stud-
ies on the brain tissue of schizophrenic patients have con-
sistently observed alterations in the expression of sev-
eral synaptic proteins. In this context, the complexin
(CPLX) family of presynaptic regulatory proteins is par-
ticularly interesting.12-18 This family consists of 4 mem-
bers (CPLX1-CPLX4), of which only Cplx1 and Cplx2
are strongly expressed in rodent forebrain.19 They play
an essential role in the regulation of synaptic transmit-
ter release by controlling assembly and stability of exo-
cytotic soluble N-ethylmaleimide-sensitive factor attach-
ment protein receptor (SNARE) complexes and thereby

influence synaptic signaling,20,21 synaptic plasticity,22,23

and neuronal network function.24

Whereas previous genetic association studies explor-
ing CPLX1 (OMIM 605032) or CPLX2 (OMIM 605033)
as classic genetic risk factors for schizophrenia have
yielded inconclusive results,25,26 interesting findings were
described regarding CPLX1 and CPLX2 messenger RNA
(mRNA) and protein analysis in postmortem brain tis-
sue. Although no systematic overall analysis of CPLX1
and CPLX2 expression patterns in normal human brain
has been published, a number of reports are available on
CPLX mRNA and protein changes in discrete brain areas
of schizophrenic patients and control subjects, provid-
ing evidence of a decreased CPLX2 mRNA expression in
regions of high relevance for schizophrenia (eg, dorso-
lateral prefrontal cortex, superior temporal cortex, and
certain regions of the hippocampus). A correspondence
to decreased CPLX2 protein levels in these regions is dif-
ficult to establish because the literature is scarce.27

In addition to schizophrenia, altered CPLX/CPLX lev-
els were measured in different brain areas of patients with
diverse other neuropsychiatric disorders and implicated in
the disease process, perhaps as determinants of a final com-
mon pathological pathway. Among these neuropsychiat-
ric disorders are Huntington disease,28,29 Alzheimer dis-
ease,30 and bipolar disorder,14,17 all of them characterized,
among others, by cognitive impairments. Interestingly,
CPLX1 and CPLX2 expression changes in the hippocam-
pus were found to be associated with cognitive deficits in
schizophrenia,31 still leaving unanswered whether the al-
tered tissue levels reflect the cause or the consequence of
disease-related cognitive dysfunction.

In this regard, behavioral consequences observed in
null mutant mice have to be considered. Although Cplx1-
null mutant mice show severe ataxia, they have no clear
cognitive phenotype and only subtle alterations in so-
cial behavior.32 The Cplx2-null mutant mice have an even
milder phenotype with slight motor abnormalities and
equivocal results regarding cognition under unchal-
lenged conditions.33-35 However, when maternal depri-
vation stress presents a second hit, cognitive dysfunc-
tion and decreased induction of hippocampal long-term
potentiation in Cplx2-null mutant mice become evi-
dent.34 A similar second hit effect may be involved in the
disease-related function of another presynaptic protein,
25-kDa synaptosome-associated protein (SNAP-25).36

Taking all these observations together, we hypoth-
esized that common genetic variants of CPLX2 may play
an important role as modifiers of cognition in situations
of additional challenge. Such a second hit to the brain,
which ultimately leads to the disease, may cause a schizo-
phrenic phenotype of variable severity depending on the
genetic variant present. Searching for mechanistic in-
sight, we hypothesized that the respective variants, if lo-
cated in the noncoding region of the gene, may influ-
ence quantitative gene expression, for example, by
modulating binding of microRNAs (miRs), which are in-
creasingly recognized as significant contributors to the
adaptive fine-tuning of synaptic functions in the brain.37,38

To lend further support to our second hit concept, we
investigated the effect of a mild peripubertal neuro-
trauma on cognition in Cplx2-null mutant mice.
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METHODS

A more comprehensive description of the patient population
and all methods and materials applied is provided in the supple-
mentary Methods section (see also eTable 1).

SCHIZOPHRENIC SUBJECTS

The GRAS data collection was approved by the Ethics Com-
mittee of the Georg-August-University (master committee) and
the local internal review boards of the collaborating centers.
The project complied with the Helsinki declaration.39 Patients
fulfilling DSM-IV criteria for schizophrenia40,41 (all types, eg,
paranoid, disorganized, catatonic, and undifferentiated,42 proven
or suspected) or schizoaffective disorder were included
(N=1071), regardless of the stage of the disorder (acute, chronic,
residual, or remitted). A total of 792 patients (73.9%) were di-
agnosed as having schizophrenia; 159 (14.8%), schizoaffec-
tive disorder; and 120 (11.2%), suspected schizophrenic psy-
chosis (other psychotic disorder or yet to be confirmed). The
mean (SD) age was 39.6 (12.8) years, with a range from 18 to
83 years. Seven hundred fourteen (66.7%) were men (age, 37.6
[12.0] years) and 357 (33.3%) were women (age, 43.7 [13.3]
years). Subjects (all older than 18 years) and, if applicable, their
legal representatives, gave written informed consent.

Patients were recruited in the 23 German psychiatric hos-
pitals listed in the supplementary Appendix, and almost all of
them were of European Caucasian descent (Caucasian, 95.3%;
other, 1.6%; unknown, 3.1%). European Caucasians are a ge-
netically homogeneous group with low average levels of ge-
netic differentiation when compared with other human popu-
lations (no strong influence on association results to be
expected).43-45 Specifically, the German population is very ho-
mogeneous, with a low genetic differentiation along a north-
south gradient within Germany. In fact, population substruc-
ture within Germany is too low to be detectable without prior
information on subpopulation membership.46

CONTROL SUBJECTS

The control subjects were voluntary blood donors recruited by
the Department of Transfusion Medicine at the Georg-August-
University according to national guidelines for blood donation.
As such, they widely fulfill health criteria, ensured by a broad pre-
donation screening process containing standardized question-
naires, interviews, hemoglobin levels, and blood pressure, pulse,
and body temperature determinations. Of the 1079 controls, 635
(58.9%) were men and 444 (41.1%) were women. The mean (SD)
age was 34.7 (12.3) years, with a range from 18 to 69 years. Com-
parable to the patient population, almost all controls were of Eu-
ropean Caucasian descent (Caucasian, 97.8%; other, 2.0%; un-
known, 0.2%). All donors gave written informed consent.

PHENOTYPING

Comprehensive interviews and testing were performed by the
same traveling team of trained examiners (psychiatrists and psy-
chologists) using the GRAS Manual described in the supple-
mentary Methods. Briefly, structured interviews were con-
ducted to explore biographical and family information, level
of education, quality-of-life indicators, disease history, and ex-
posure to prenatal, perinatal, and/or postnatal environmental
risk factors. Likewise, the psychopathological profile, psychi-
atric comorbidities, and current/former treatments were as-
sessed. Psychometric rating, neuropsychological tests, and neu-
rological examinations were also performed.

GENOTYPING

Standard methods were used for DNA extraction from periph-
eral blood cells (Genomed GmbH, Löhne, Germany). Sequenc-
ing was performed using the dideoxy chain termination method
(BigDye Terminator version 3.1 cycle sequencing kit on a
3730XL DNA analyzer; Applied Biosystems, Foster City, Cali-
fornia). Genotyping was performed with simple probes (TIB
Molbiol, Berlin, Germany) on a real-time polymerase chain re-
action instrument (LightCycler 480; Roche Diagnostics GmbH,
Mannheim, Germany).

EXPRESSION ANALYSIS

Expression analysis was conducted in Neuro-2a (N2a) cells
(LGC Standards GmbH, Wesel, Germany) with the dual-
luciferase reporter system (Promega, Mannheim, Germany).
Briefly, the first 274 base pairs (bp) of the 3� untranslated re-
gion (3�UTR) of CPLX2, containing single-nucleotide poly-
morphism (SNP) rs3822674 with a C or a T allele, were am-
plified from respective human samples and cloned into Renilla
luciferase vector phRL-SV40 (Promega). The N2a cells were
plated in 96-well plates, cultured for 16 to 18 hours, and trans-
fected using a commercially available reagent (Lipofectamine
2000; Invitrogen, Karlsruhe, Germany). A total of 1 ng of phRL-
SV40 (T or C construct or the vector without the insert) and 1
pg of pCMV-FFluc control vector (Promega) were cotrans-
fected with/without 1 pmol of hsa-miR-498 (Ambion, Foster
City, California). The dual-luciferase reporter assay was per-
formed 24 hours after transfection according to the manufac-
turer’s protocol (Promega). Measurements were conducted with
a commercially available microplate reader (Mitras LB 940; Ber-
thold Technologies GmbH, Regensdorf, Switzerland). Renilla
values were divided by the corresponding firefly readings pro-
ducing values expressed as relative luciferase units.

ISOLATION OF PERIPHERAL
BLOOD MONONUCLEAR CELLS

AND QUANTITATIVE REAL-TIME REVERSE
TRANSCRIPTASE–POLYMERASE

CHAIN REACTION

Blood was collected in citrate phosphate dextrose adenine tubes
from schizophrenic patients with different genotypes (CC, CT,
and TT) at SNP rs3822674 in the 3�UTR. Six patients had the
CC genotype (mean [SD] age, 48.5 [5.3] years); of these, 3 were
men (age, 52.3 [4.7] years) and 3 were women; (age, 44.6 [10.1]
years). Four had the CT genotype (age, 41.8 [3.4] years), and
all 4 were men. Six had the TT genotype (age, 47.5 [5.8] years);
of these, 5 were men (age, 45.6 [6.7] years) and 1 was a woman
(age, 57 years). Peripheral blood mononuclear cells (PBMCs)
were isolated applying a standard isolation procedure (Ficoll-
Paque Plus; GE Healthcare, München, Germany). The RNA was
prepared using a commercially available kit (miRNeasy Mini
Kit; Qiagen GmbH, Hilden, Germany). The RNA samples were
used to synthesize complementary DNAs (SuperScriptIII; In-
vitrogen). The quantitative real-time polymerase chain reac-
tion analysis was performed using the fluorescent dye SYBR
Green (LightCycler 480; Roche Diagnostics GmbH). The cycle
threshold values were standardized to the cycle threshold val-
ues of glyceraldehyde-3-phosphate dehydrogenase. Primers are
listed in the supplementary “Methods” section.

ANIMAL BEHAVIOR

Male Cplx2-null mutant mice vs wild-type littermates with or with-
out juvenile parietal cortical cryolesion47 underwent behavioral
testing, including the Morris water maze, at 10 months of age.
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STATISTICAL ANALYSES

Statistical analyses were performed with commercially available
software (GraphPadPrism,version5.01;GraphPadSoftware Inc,
La Jolla, California) for experimental data (animal study and ex-
pressionexperiments).FortransfectionstudiesandforPBMCanaly-
sis, 2-tailed pairwise Mann-Whitney test was applied; for mouse
behavior studies,2-wayanalysisofvariance for repeatedmeasures
was used. For human data, haplotype association analyses of bi-
nary categorical variables was performed with UNPHASED (ver-
sion 3.0.13; Frank Dudbridge, http://www.mrc-bsu.cam.ac.uk
/personal/frank/software/unphased/), performing likelihood ratio
tests in a log-linear model through unconditional logistic regres-
sion adjusting for age and sex.48 Correlations of the 3 quantita-
tive modifier variables (executive functioning, reasoning, and ver-
bal learning/memory) and the quantitative constitutive variable
(premorbid intelligence) were assessed using Pearson product-
moment correlation,49 determining internal consistency of the 3
target variables by the Cronbach � coefficient.50 All metric phe-
notypic variables were standardized to be normally distributed
with zero mean and variance 1 (by Blom Transformation51 [de-
scribed in the supplementary Methods section]). Subsequently,
linear models with covariate adjustment were used for single-
marker association analyses (R, version 2.8.1; http://cran.r-project
.org) and for haplotype association analyses of the standardized
quantitative traits (SAS, version 9.152), with PLINK (version 1.06)53

for estimation and tabulation of all possible individuals’ haplo-
type phases and their posterior probabilities (given the genotype
data). Multivariate analysis modeled a target phenotype vector,

accounting for individual correlation between vector entries. For
single-marker association analyses, a permutation test was used
to estimate multiple testing adjusted P values to obtain by chance
no less than the observed amount of significances for a given set
of tests (Table). All other P values are nominal, with P less than
.05 indicating significance. Details for quantitative trait analyses
and for the permutation test are given in the supplementary Meth-
ods section.

DATABASES

InformationonCPLX2 sequenceswasobtained fromtheNational
Center for Biotechnology Information (http://www.ncbi.nlm.nih
.gov/) and the University of California–Santa Cruz (http://genome
.ucsc.edu/) (GeneID, 10814). Accession numbers for the 2 CPLX2
transcripts are NM_006650.3 (T1) and NM_001008220.1 (T2).

RESULTS

CPLX2 GENOTYPING
AND ASSOCIATION STUDIES

Case-Control Study

We analyzed first the genetic variability of the CPLX2 gene54

in 1071 schizophrenic patients of the GRAS sample vs 1079
healthy control subjects with comparable ethnicity. The
CPLX2 coding region (exons 4-6), adjacent introns, and

Table. Neurocognitive Performance Associated With CPLX2 SNPsa

Phenotype

SNP

Kd

Permutation
Test

P Value
(95% CI)ers6868608 rs2443541b rs2243404 rs4242187 rs10072860b rs4868539 rs1366116b rs3892909b rs3822674b,c rs56934064

� 251
Ex6

Target (Modifier) Variables
Combinedf

F (P ) values 0.310
(.733)

2.827
(.059)

3.705
(.025)

0.679
(.507)

2.254
(.105)

0.868
(.420)

4.288
(.014)

5.073
(.006)

3.288
(.037)

0.423
(.655)

0.517
(.596)

4 .020
(.017-.023)

Individualg

Exec
F (P ) values 1.554

(.212)
4.238
(.015)

3.621
(.027)

2.000
(.136)

3.690
(.025)

0.673
(.510)

1.753
(.174)

1.808
(.165)

1.043
(.353)

0.459
(.632)

0.279
(.759)

9
Block
.012

(.010-.014)

Reasoning
F (P ) values 0.670

(.512)
1.562
(.210)

1.722
(.179)

1.361
(.257)

2.567
(.077)

1.357
(.258)

5.327
(.005)

5.434
(.004)

4.409
(.012)

0.374
(.688)

0.366
(.694)

Verbal L/M
F (P ) values 1.186

(.306)
3.321
(.037)

4.437
(.012)

0.520
(.594)

0.202
(.817)

0.310
(.733)

2.218
(.109)

3.239
(.040)

1.294
(.275)

1.012
(.364)

0.603
(.548)

Constitutive Variable
Premorbid

intelligence
F (P ) values 1.500

(.224)
1.159
(.314)

2.185
(.113)

0.494
(.610)

2.107
(.122)

0.076
(.927)

2.309
(.100)

4.511
(.011)

0.754
(.471)

0.867
(.420)

0.481
(.618)

1 .357
(.348-.366)

Control Variable
GAF

F (P ) values 0.442
(.643)

1.875
(.154)

1.579
(.207)

0.404
(.668)

0.131
(.877)

1.059
(.347)

1.413
(.244)

0.143
(.867)

1.068
(.344)

0.633
(.531)

0.803
(.448)

0 1.000
(1.000-1.000)

Abbreviations: CI, confidence interval; Exec, executive functioning; GAF, Global Assessment of Functioning Scale; L/M, learning/memory; SNP, single-nucleotide
polymorphism.

aSingle locus association analyses of phenotypes with CPLX2, adjusted for sex and age and, in the case of premorbid intelligence, additionally for nonnative German
speakers with language problems (8.6% of the total sample; 1.9% had to be taken out completely owing to severe language difficulties [described in the supplementary
“Methods” section]). Significant test statistics (F values, 2 df ) and P values are displayed in boldface type (P� .05).

bMarkers that underwent haplotypic analysis.
cThe SNP in the 3� untranslated region, affecting the miR-498 binding site.
dThe observed number of P values less than .05 on all tests for the multivariate phenotype, for the 3 univariate phenotypes, for the premorbid intelligence, as well as

for the control variable (GAF).
eMultiple testing adjusted P values (with 95% confidence interval to characterize estimation quality) were obtained by permutation test (described in

the supplementary Methods section).
fMultivariate model.
gUnivariate phenotypes.
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part of the 3�UTR were sequenced, revealing the presence
of 4 SNPs in this region. The putative promoters, up-
stream of or within exons 1 and 3, and adjacent introns
were analyzed by direct genotyping of 7 selected SNPs cov-
ering this region (Figure 1 and eTable 2).

On sequencing of the coding region of CPLX2, no in-
formative mutations were found in schizophrenic or healthy
control subjects (eTable 3). A simple case-control associa-
tion study, based on end point diagnosis and single mark-
ers, did not yield significant differences between cases and
controls regarding genotypic or allelic frequencies (eTable
4). Three main haploblocks, closely resembling those de-
scribed for this region by the HapMap Project (http://www
.hapmap.org), were also identified in our population
(Figure 1). Here, a haplotypic combination covering these
3 haploblocks and consisting of SNPs rs2443541/rs3892909
/�251Ex6 appeared to be increased in cases (14.6%) vs con-
trols (12.0%) (odds ratio [OR], 1.31; 95% confidence in-
terval [CI], 0.98-1.76; �2

1=3.92; P=.048). This result,
however, is of borderline significance and will need fur-
ther confirmation. In contrast, a low-frequency haplotype

(2.3% in cases vs 0.9% in controls) within haploblock 2,
including SNPs rs1366116 and rs3892909, showed higher
association with schizophrenia (OR, 2.47; 95% CI, 1.41-
4.34; �2

1=11.15; P� .001).

Phenotype-Based Genetic Association Study

In a first analysis of associations between genetic signa-
tures and specific biological readouts within the GRAS
group of schizophrenic patients, we focused on cogni-
tive performance. Regarding the cognitive tests used, we
followed our hypothesis of CPLX2 influencing current
higher brain functions but not premorbid intelligence.
This hypothesis was mainly derived from our Cplx2-
null mutant mouse study, exploring the effect of a sec-
ond hit to the brain. Other neuropsychological tests per-
formed in the frame of the GRAS project (which we looked
at later for exploratory reasons) turned out to be less or
not affected by CPLX2 gene variants (data not shown).

To examine the role of CPLX2 in cognition, we con-
structed a phenotypic intercorrelation network consist-

A

B

93 99 96 25 50 86 92 89 96 96

94 94 9 13 54 84 76 51 93

27 6 2 1 58 55 48 48

51 0 12 2 29 40 45

62 15 11 3 26 38

72 13 34 16 26

72 36 33 15

62 34 32

64 33

60

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11

Block 1 (6 kb) Block 2 (26 kb) Block 3 (0.3 kb)

rs6868608

rs2443541

rs2243404

rs4242187

rs10072860

rs4868539

rs1366116

rs3892909

rs3822674

rs56934064

+251Ex6

5′
I II III IV V VI

3′

3′
VIVIVIIIIII

5′

87.4 kb
12.5 kb

Figure 1. Genomic organization of the CPLX2 gene. A, The CPLX2 gene is located at 5q35.2 and spans 87.4 kilobases (kb). The 6 exons (boxes) encode 2
different splicing variants (indicated by triangles) leading to 1 protein (coding region is shaded). Introns are shown as interrupted solid lines; size of transcripts is
indicated. B, Overview of the analyzed markers (Ms) in the CPLX2 gene. The exons (blue boxes) are numbered and the single-nucleotide polymorphisms (SNPs)
(red lines) are named (described in eTable 2). The SNP affecting the microRNA-498 binding site is labeled in red. Linkage disequilibrium (LD) analysis was per-
formed in Haploview55 (n=2027 cases and control subjects). The numbers in the squares are the measure of LD, D�. The darker the red is, the higher the linkage;
all D values of 50 or higher are in boldface type. The gene shows 3 main blocks of high LD.
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ing of test results for executive functioning, reasoning, and
verbal learning/memory as target (modifier) variables that
are subject to potential influence of disease-modifying fac-
tors. Premorbid intelligence, representing the develop-
ment dependent intellectual state at disease onset, was se-
lected as the constitutive variable, expected to influence the
cognitive phenotype and to correlate with the target vari-
ables but to be essentially independently regulated
(Figure2A). Determination of premorbid intelligence as-
sists in estimation of the cognitive decline in brain dis-
eases such as schizophrenia. The most frequently used tests
(including the one applied herein, the Mehrfachwahl-
Wortschatz Test B56) measure vocabulary skills, which es-
sentially depend on the level of education reached at the
time point of disease onset.57 This vocabulary knowledge,
once acquired, tends to stay on (frozen) even if other cog-
nitive skills decline owing to the disease process. As ex-
pected, there is a highly significant correlation between the
number of years in school according to the final degree as
a measure of level of education and the test results of the
Mehrfachwahl-Wortschatz Test B (in the GRAS sample at
present, r=0.45; P� .001).

The cognitive target variables together yielded a phe-
notypic intercorrelation network of high quality (Cron-

bach �=.76), providing a solid basis for multivariate analy-
ses. After correction for age and sex, 4 SNPs in the CPLX2
gene (among them 2 markers belonging to the haplo-
types of risk described in the case-control approach) cor-
related with overall neurocognitive function as evalu-
ated by our multivariate model. Tests of univariate
phenotypes—executive functioning, reasoning, and ver-
bal learning/memory—showed this association even for
6 SNPs (Table). As expected, the constitutive variable pre-
morbid intelligence was not significantly associated with
single SNPs. The Table provides a synopsis of all tested
SNPs of CPLX2 for the multivariate model and the uni-
variate phenotypes, as well as for the constitutive vari-
able. Global functioning is presented as a disease-
relevant control variable. Raw data and the influence of
specific genotypes on cognition are shown in eFigure 1
and eTable 5.

Multilocus analysis, including all SNPs with any ef-
fects on cognition in individual neuropsychological tests
(Table), showed that the combination of markers has a
statistically significant effect on cognitive performance
in the multivariate model and the univariate pheno-
types (eTable 6). The haplotypic combination CTC at
markers rs1366116/rs3892909/rs3822674 predicts the
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Figure 2. CPLX2 in schizophrenia: genotype-phenotype interactions. A, Intercorrelation network of target (light blue) and constitutive (gray) variables to
demonstrate phenotype coherence regarding higher cognitive functions. The Cronbach � of .76 shows a high internal consistency of the 3 target variables. Lines
of different thickness and color indicate strengths of correlation between different tests. B, The single-nucleotide polymorphism (SNP) rs3822674 (green shading)
lies in the seed region (black box) of hsa–microRNA [miR]–498. Mismatches are indicated with gray shading. C, ��G values for the different alleles (green box)
indicate the binding probabilities for hsa-miR-498 to the CPLX2 3� untranslated region (3�UTR). D, phRL-CPLX2-3�UTR contains an SV40 promoter, the Renilla
luciferase (RLuc) gene, the first 274 base pairs (bp) of the 3�UTR, and a polyA signal. The restriction sites are indicated and the pink line shows the predicted
binding site for hsa-miR-498. E, phRL-CPLX2-3�UTR (containing C or T allele) or phRL-SV40 (without insert), internal control pCMV-FFLuc, and hsa-miR-498
were cotransfected into Neuro-2a (N2a) cells. Relative luciferase expression (normalized to the data without miR) is displayed for the different conditions. For 6
independent experiments, means were obtained of 6 replicates each. With pairwise Mann-Whitney 2-tailed test, *P=.015 (Un1=n2=6=3); †P=.002 (Un1=n2=6=0). F,
Spontaneous CPLX2 messenger RNA expression in peripheral blood mononuclear cells is modulated by the genotype. With pairwise Mann-Whitney 2-tailed test,
*P=.026 (Un1=n2=6=4). G and H, A “second hit” (cryolesion) is required to provoke a cognitive phenotype in Cplx2-null mutant mice in the Morris water maze test.
G, Only Cplx2-null mutant mice with lesions show elevated escape latency in the hidden platform task (2-way analysis of variance [ANOVA] for repeated measures
applied for the last 2 test days; significant effect of factor lesion in Cplx2-null mutant mice: *F1,33=10.83; P=.002). KO indicates knockout; WT, wild-type. H, Again,
only Cplx2-null mutant mice with lesions show absence of preference for the target quadrant in the probe trial (2-way ANOVA; significant interaction effect
between factors genotype and lesion: *F1,56=4.82; P=.032). In parts E through H, limit lines represent SEM.
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worst cognitive outcome for all target phenotypes and
even for the constitutive variable. In fact, the CTC hap-
lotype shows significantly decreased cognitive perfor-
mance compared with all other haplotypic combina-
tions (eTable 7).

SEARCH FOR MECHANISMS OF SNP FUNCTION

Allele-Dependent Reporter Gene Expression

To gain a first insight into the mechanisms by which the
identified SNPs might modulate certain domains of cog-
nition, we performed an extensive analysis of the rel-
evant genomic sequences (see the supplementary Meth-
ods section). One of the cognition-relevant SNPs that we
identified (rs3822674) is located within a predicted bind-
ing site of the hsa-miR-498 in the 3�UTR of the CPLX2
mRNA. This binding site is highly conserved among spe-
cies (Figure 2B and C as well as eFigure 2 and eTable 7).
Allele-dependent structural predictions and ��G val-
ues indicated that the C-to-T exchange affects miR bind-
ing and might therefore modulate CPLX2 expression. To
test this, we cloned the first 274 bp of the 3�UTR of CPLX2
downstream of a luciferase reporter gene (phRL-SV40;
Figure 2D) and transfected this construct into N2a cells.
On addition of hsa-miR-498, luciferase expression was
significantly (�50%) reduced in the presence of the T
allele (U=0.00; P=.002), whereas the presence of the C
allele yielded an expression comparable to that of the con-
trol (vector lacking 3�UTR insert) (Figure 2E). These re-
sults suggest a role of SNP rs3822674 in posttranscrip-
tional regulation of CPLX2 expression that may become
relevant on miR profile changes in specific neuronal sub-
sets in response to, for example, brain injury.38

Spontaneous Genotype-Dependent CPLX2
mRNA Expression in PBMCs

To test the influence of genotype on baseline CPLX2
mRNA levels, PBMCs from patients with the CC, CT, or
TT genotype at SNP rs3822674 were analyzed. There was
a significant genotype effect, with the TT genotype hav-
ing the highest levels of the transcript (Figure 2F).

MODELING COGNITIVE EFFECTS
OF ALTERED Cplx2 EXPRESSION IN MICE

Based on the hypothesis that altered CPLX2 expression
influences cognitive performance, we investigated mice
with a Cplx2-null mutation.58 These mice develop essen-
tially normally and lack major behavioral abnormali-
ties. To test for a potential influence of a second hit to
their brains, a right parietal cortical cryolesion was ap-
plied stereotactically at a vulnerable time (ie, puberty [day
28 of life]). This lesion paradigm had originally been de-
veloped to model the neurodegenerative processes of
schizophrenia47 spreading from the initiation site, the pa-
rietal lobe, to other cortical areas.59 Specific deficits in
spatial memory (Morris water maze, escape latency) be-
came evident only in Cplx2-null mutant mice that had

received a peripubertal lesion (F1,33=10.83; P=.002), but
not in identically treated wild-type littermates (F1,23=2.27;
P=.146) (Figure 2G). Also, only lesioned Cplx2-null mu-
tant mice showed absence of any preference for the tar-
get quadrant (Morris water maze, probe trial, F1,56=4.82;
P=.032) (Figure 2H). Hence, a cognition modifier role
of Cplx2 was revealed only upon combination of a Cplx2-
null mutation with an environmental cofactor (ie, pari-
etal cryolesion as a second hit), leading to a remarkable
deterioration of cognitive performance.

COMMENT

Collectively, these data support a modifier role of CPLX2
variants on cognitive performance in schizophrenia.
Whereas our conventional case-control study revealed
schizophrenia-at-risk haplotypes of the CPLX2 gene, con-
stituting several of the investigated markers, only the
PGAS allowed the specific identification of 6 cognition-
related SNPs. These SNPs in turn may become relevant
mainly on additional (environmental) cofactors, that is,
second hits. The effects of CPLX2 genotypes on current
cognition of schizophrenic patients observed herein do
not exclude a comparable role in other neuropsychiat-
ric disorders or even in healthy individuals in which, for
instance, aging would be an inevitable second hit. In this
regard, further extensive studies on different popula-
tions are required. Among the mechanisms mediating
genotype-dependent CPLX2 expression upon second hit
may be the binding of hsa-miR-498 to SNP rs3822674
in the 3�UTR of the CPLX2 mRNA that leads to its sub-
sequent downregulation.

Measuring spontaneous CPLX2 mRNA expression in
PBMCs of schizophrenic patients reveals different levels
dependent on the genotype, with the best cognitive per-
formers (TT at SNP rs3822674) showing the highest ex-
pression. In contrast, the CC carriers have lower mRNA
expression and reduced cognitive capabilities. Most im-
portant, however, CC and TT carriers are not different
when compared with respect to their premorbid intelli-
gence, reflecting cognitive abilities before they were “hit
by the disease.” Correspondingly, Cplx2-null mutant mice
are severely cognitively impaired only after a second hit,
delivered in the present study by mild neurotrauma (ju-
venile parietal cortical cryolesion) and in a prior report
by maternal deprivation stress.34 Intriguingly, only the
T allele at SNP rs3822674 (resulting in higher baseline
levels of CPLX2 mRNA and better cognition) allows bind-
ing of hsa-miR-498 and thus regulability, that is, subse-
quent downregulation of CPLX2 mRNA.

Current models of a dichotomous Cplx function as-
sume that Cplxs have a facilitatory role in transmitter re-
lease, by stabilizing SNARE complexes in a highly fuso-
genic state, as well as an inhibitory role, by clamping
SNARE complexes and thus preventing them from ex-
ecuting synaptic vesicle fusion until triggered by an ac-
tion potential and the concomitant increase in the intra-
synaptic calcium ion concentration. Indeed, calcium
ion–regulated exocytosis in many different preparations
is inhibited to similar degrees by increased or decreased
Cplx activity.21,27
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Based on these facts and the cognitive data from our
patients, we conclude that the regulability necessary for
maintaining or adjusting the homeostasis of CPLX2 ex-
pression may constitute a key factor in the fine tuning
of synaptic function. This concept has similarly been sug-
gested earlier on the basis of in vitro studies60 and is in
agreement with the notions that (1) loss as well as over-
expression of CPLXs/Cplxs can perturb presynaptic se-
cretory function, and that (2) CPLXs combine facili-
tatory and inhibitory functions with respect to synaptic
secretion. This functional combination has been delin-
eated in a recent study also demonstrating that in differ-
ent CPLXs the balance between facilitatory and inhibi-
tory activities may be different.61

Considering the large number of human postmor-
tem studies describing abnormalities in the absolute
amount or the ratios of the different CPLX proteins
and CPLX mRNAs,13-18,31 these dichotomous CPLX/
Cplx functions and their tight regulation under physi-
ological conditions may be of major relevance for
pathological cognition seen in several neuropsychiat-
ric diseases. The mechanistic basis for the observed
alterations in tissue concentration, however, is pres-
ently far from clear.

Analyses of mouse models failed to provide evidence
of simple compensatory changes in Cplx expression in
the corresponding Cplx1–, Cplx2–, Cplx3–, or Cplx4–
single-null mutant mice.58,62,63 Expression levels of all other
presynaptic proteins tested so far were also found to be
unaltered in Cplx1-null mutant brains (�-SNAP,
Munc13-1, Munc13-2, Munc13-3, Munc18-1, N-
ethylmaleimide-sensitive factor, SNAP-25, synapsin I/IIa,
synapsin IIb, synaptobrevin 2, synaptophysin, synapto-
tagmin 1, syntaxin 1, and vesicular 	-aminobutyric acid
transporter), in Cplx2-null mutant brains (�-SNAP,
Munc13-1, Munc13-2, Munc13-3, Munc18-1, SNAP-
25, synapsin I/IIa, synapsin IIb, synaptobrevin 2, synap-
tophysin, synaptotagmin 1, and syntaxin 1), and in Cplx1/
2-double-null mutant brains (SNAP-25, synaptobrevin
2, synaptotagmin 1, syntaxin 1, and vesicular 	-
aminobutyric acid transporter).58 In Cplx3/4-double-
null mutant retina, only Ribeye expression was reduced
among 17 presynaptic proteins tested.62 Based on these
findings, we would argue that even loss of CPLX2/
Cplx2 is unlikely to be compensated for by robust changes
in the expression levels of other related presynaptic pro-
teins. Functionally relevant alterations, however, may be
subtle and escape detection by the available methods. Also,
given that pathological states were not explored and that
not all of the many dozens of proteins were tested that
might act in a compensatory manner on loss of Cplx2,
the possibility remains that such compensatory changes
occur. However, it is almost impossible to investigate this
systematically with the currently available technology and
tools/reagents.

In addition to SNP rs3822674, 5 other SNPs were
also associated with cognitive performance of schizo-
phrenic patients in the present study. The mechanisms
underlying the impact of these other intronic genetic
variants on cognition are still unclear, but several possi-
bilities may be considered. (1) Because of the linkage
disequilibrium between these genetic markers, the

influence of the 3�UTR regulatory mechanism mediated
by SNP rs3822674 may be detected by several other
markers along the gene. (2) Effects of the intronic vari-
ants, largely independent of the rs3822674 3�UTR
mechanism, cannot be excluded at this point, for
example, on transcription factor binding sites or other
regulatory elements in the gene affecting expression
level or splicing of transcripts.

To summarize, we propose that neurons in brain
regions that control cognitive abilities require—
depending on the situation—an exact control of CPLX2
expression. Subtle disturbances in the optimal amount
of CPLX2/Cplx2 levels would therefore influence cog-
nitive functions. Our data indicate (1) that this control
is, at least in part, mediated by the binding of hsa-miR-
498 to the 3�UTR of the CPLX2 mRNA, and (2) that a
polymorphism in the binding region of hsa-miR-498 (SNP
rs3822674) influences CPLX2 gene expression and thus
modulates cognitive performance. Together with other
genetic and environmental mechanisms that affect cog-
nition, this genetic variant may be an important code-
terminant of cognitive outcome in schizophrenia.
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No. Center Institution Head 
1 Bad Zwischenahn Karl-Jaspers-Hospital, Psychiatric Federation 

Oldenburger Land 
Marianne Becker-Emner 
Dunja Hinze-Selch 

2 Bonn Department of Psychiatry and Psychotherapy, 
University Medical Center of Bonn 

Wolfgang Maier 

3 Eltville-Eichberg Vitos Hospital of Forensic Psychiatry Eltville Roland Freese 
Adelheid Czernik 4 Fulda Department of Psychiatry and Psychotherapy, 

Hospital Fulda Georg Wiedemann 
5 Giessen Vitos Hospital of Forensic Psychiatry Haina, 

Giessen 
Rüdiger Müller-Isberner 

Peter Falkai 6 Göttingen Department of Psychiatry and Psychotherapy, 
University Medical Center of Göttingen Eckart Rüther 

7 Günzburg Department of Psychiatry and Psychotherapy, 
District Hospital Günzburg 

Thomas Becker 

8 Hofgeismar Vitos Hospital of Psychiatry and Psychotherapy 
Merxhausen, Hofgeismar 

Andreas Mielke 

9 Ingolstadt Department of Psychiatry and Psychotherapy, 
Hospital Ingolstadt 

Thomas Pollmächer 

10 Kassel Vitos Hospital of Psychiatry and Psychotherapy 
Merxhausen, Kassel 

Rolf Günther 

11 Kiel Hospital of Psychiatry and Psychotherapy, Center 
for Integrative Psychiatry 

Josef B. Aldenhoff 

12 Langenhagen Hospital of Psychiatry and Psychotherapy 
Langenhagen, Regional Hospitals Hanover 

Gunther Kruse 

13 Liebenburg Dr. K. Fontheim's Hospital for Mental Health Frank-Gerald Pajonk 
14 Lübbecke Department of Psychiatry and Psychotherapy, 

Hospital Lübbecke 
Udo Schneider 

Heinrich Kunze 15 Merxhausen–Bad 
Emstal 

Vitos Hospital of Psychiatry and Psychotherapy 
Merxhausen, Bad Emstal Michael Franz 

Martin Schott 16 Moringen Hospital of Forensic Psychiatry 
Dirk Hesse 

17 Mühlhausen Department of Psychiatry and Psychotherapy, 
Ecumenical Hospital Hainich 

Lothar Adler 

Hans-J. Schwarz 18 Rickling Hospital of Psychiatry and Psychotherapy 
Wolfram Schreiber 

19 Rieden Addiction Hospital "Am Waldsee" Frank Löhrer 
20 Rostock Department of Psychiatry and Psychotherapy, 

University of Rostock 
Sabine Herpertz 

21 Taufkirchen Department of Psychiatry and Psychotherapy, 
Isar-Amper-Hospital, Taufkirchen (Vils) 

Matthias Dose 

22 Wilhelmshaven Department of Psychiatry and Psychotherapy, 
Reinhard-Nieter Hospital 

Here Folkerts 

Andreas Spengler 23 Wunstorf Department of Psychiatry and Psychotherapy, 
Regional Hospitals Hanover Cornelia Oestereich 

 
6 Göttingen Department of Transfusion Medicine Joachim Riggert 
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eMethods 
 

I) GRAS Data Collection—Overview 

 

1. Ethics Proposal and Internal Review Boards 

The GRAS (Göttingen Research Association for Schizophrenia) study was approved by the Ethics 

Committee of the Georg-August-University, Göttingen, and the local internal review boards of the 

collaborating centers. The research study complied with the Helsinki declaration.1 

 

2. Subject Demographics and Enrollment 

Subjects were included that carried the diagnosis schizophrenia according to the DSM-IV.2,3 All 

types (eg, paranoid, disorganized, catatonic, and undifferentiated4) and stages (eg, acute, chronic, 

residual, or remitted) were included. Also, patients with schizoaffective disorders were included. 

Subjects had to be at least 18 years old; there was no upper age limit. Patients were preselected by 

the organizers at the collaborating centers according to the diagnosis schizophrenia or 

schizoaffective disorder based on DSM-IV2,3 and introduced to the traveling investigators. Every 

patient gave written informed consent after extensive explanation of the protocol. Of the 1071 

subjects referred to the field study team, 73.9% carried the diagnosis schizophrenia (n = 792), 

14.8% schizoaffective disorder (n = 159), and 11.2% were suspected to have had a schizophrenic 

psychosis (other psychotic disorder or yet to be confirmed [n = 120]). The average age was 39.62 ± 
12.76 years, with a range from 18 to 83 years. Men (n = 714 [66.7%]) were 37.57 ± 12.00; women 

(n = 357 [33.3%]), 43.74 ± 13.26 years old. 

 

Control subjects were voluntary blood donors, recruited by the Department of Transfusion Medicine 

at the Georg-August-University of Göttingen according to national guidelines for blood donation. 

As such, they widely fulfill health criteria, ensured by a predonation screening process containing 

standardized questionnaires, interviews, hemoglobin, blood pressure, pulse, and body temperature 

determinations. This procedure cannot entirely exclude some selection bias. For example, 

individuals with weight <50 kg or hemoglobin <12.5 g/dL are excluded from blood donation. Of the 

1079 subjects, 58.9% were male (n =  635) and 41.1% female (n = 444). The average age was 34.69 
± 12.33 years, with a range from 18 to 69 years. All donors gave written informed consent. 
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3. Structured Interviews 

Structured interviews were carried out to explore school and professional education, current and 

employment history, partnerships and marital status, leisure activity and social network in pasttime 

activities, forensic history, home living situation, quality of life, migration background, medication 

(drug, type of neuroleptic, dosage, chlorpromazine equivalent), and history of previous physical 

diseases. Psychiatric comorbidities (addictions, anxiety and compulsions, depressive and manic 

symptoms) and symptoms related to schizophrenia such as psychotic symptoms, lack of drive, 

affect and thought content, disorganized behavior, speech, and parathymia were assessed employing 

the SCID (Structured Clinical Interview for DSM-IV).3 Efforts were undertaken to estimate onset of 

disease and prodrome of schizophrenia, as well as number of psychotic episodes and number and 

duration of hospitalizations. Special care was devoted to explore suicidality and self-harming 

behavior, psychotrauma, such as loss of parents or close relatives, victim status of physical abuse, 

disasters, or crime, neurotrauma and infections, prenatal and perinatal complications, and family 

history of psychiatric and physical diseases. The interviews were complemented by information 

obtained from medical records/charts provided by the collaborating centers. 

 

4. Psychometric Rating Scales 

a) PANSS (Positive and Negative Syndrome Scale)5 

b) BSI (German version of Brief Symptom Inventory)6 

c) STAI (German version of State-Trait Anxiety Inventory)7 

d) TAS-26 (German version of Toronto Alexithymia Scale)8 

e) CGI (Clinical Global Impressions Scale)9 

f) GAF (Global Assessment of Functioning Scale)2 

 

5. Neuropsychological Tests 

a) Executive functioning (Trail-Making Test B)10,11 

b) Reasoning (Subtest 3 of LPS)12 

c) Verbal learning and memory (VLMT)13 

d) Premorbid intelligence (Mehrfachwahl-Wortschatz Test B [MWT-B])14 

e) Working memory (Letter-number sequencing test, subtest of WAIS-III)15 

f) Processing speed (Trail-Making Test A)10,11 

g) Psychomotor speed, concentration, and attention (digit symbol test, subtest of HAWIE-R)16 

h) Verbal fluency (category and letters)17,18 
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i) Fine motor function, speed, and coordination (tapping and dotting)19 

j) Alertness and divided attention (TAP)20 

 

6. Neurological Tests 

a) Cambridge Neurological Inventory (CNI)21 

b) Contralateral Co-Movement Task (COMO)22 

c) Olfactory testing (commercially available olfactory labels [www.sensonics.com] were used for 

odor identification in a multiple choice setting or free naming and assignment of odor 

properties/odor interpretation) 

d) Barnes-Akathisia Scale (BAS)23 

e) Simpson-Angus Scale (SAS)24 

f) Abnormal Involuntary Movement Scale (AIMS)9 

g) Tardive Dyskinesia Rating Scale (TDRS)25 

 

II) Genetic Analyses 

 

1. DNA Extraction and Normalization 

Genomic DNA was purified from whole blood using JETQUICK Blood & Cell Culture DNA Spin 

Kit (Genomed GmbH, Löhne, Germany) according to the manufacturer's protocol. Resulting DNA 

samples were divided into aliquots and stored at −80°C. For further analysis, DNA was normalized 

to 50 ng/µL with an automated robotic platform (Microlab Star; Hamilton, Bonaduz, Switzerland). 

For quality control, each sample was analyzed with a 0.8% agarose gel. 

 

2. Analysis of the Coding Region of CPLX2 

Polymerase Chain Reaction (PCR): The coding region of CPLX2 was amplified via 2 PCR 

reactions. Primers were synthesized using a 3900 DNA Synthesizer (Applied Biosystems, Foster 

City, California). The first fragment (exons 4 and 5) was amplified with the following primers: 

CPLX2_Ex4_5 forward: 5′-AAATAGGGACCAAACCGCTTTCA-3′ 

CPLX2_Ex4_5 reverse: 5′-GGTCCCAAAGATCTGCAGTACGA-3′. 

 

The second PCR (exon 6) was carried out with the primers: 

CPLX2_Ex6 forward: 5′-CCATTGGTTCAAGTCAGATTCGTC-3′ 

CPLX2_Ex6 reverse: 5′-GTCACCACACTAGCACGACCTTAG-3′. 

22



 

© 2010 American Medical Association. All rights reserved. 

 

For each sample, the reaction mixture (21 µL) was prepared in 384-well plates, each containing 100 

ng of human genomic DNA, NH4 buffer (1×), 120µM dNTPs each, 2.4mM MgCl2, 200nM forward 

and reverse primers, and 1 U Diamond polymerase (Bioline, Luckenwalde, Germany). The cycling 

program was carried out after a preheating step at 94°C for 5 min and included 30 cycles of (1) 

denaturation at 94°C for 30 s, (2) annealing at 60°C for 30 s, and (3) extension at 72°C for 60 s in a 

DNA thermal cycler (PTC-200 MJ Research; BioRad, Munich, Germany). 

 

Sequencing: The PCR amplicons were purified from unincorporated primers and dNTPs by 

digesting with 1 U shrimp alkaline phosphatase (SAP) und 5 U Exonuclease I (Exo) according to 

the manufacturer’s instructions (USB Europe GmbH, Staufen, Germany). For analysis on the ABI 

3730 XL DNA analyzer sequencing reactions (12 µL) were prepared in 384-well plates, each 

containing 4 µL purified PCR product, sequencing buffer (×1) and 300nM primer (same as used for 

PCR; sense or antisense) using the BigDye Terminator v3.1 Cycle Sequencing kit (Applied 

Biosystems). The following PCR thermal cycling profile was used after a preheating step at 94°C 

for 30 s: 25 cycles of (1) 96°C for 10 s; (2) 50°C for 10 s; (3) 60°C for 2 min. When cycling was 

complete, the sequencing reactions were precipitated using ethanol and magnetic beads (AgenCourt 

Clean Seq; GC Biotech, Alphen aan den Rijn, Netherlands) to eliminate unincorporated fluorescent-

labeled nucleotides. Raw data were processed with sequencing analysis 5.2 (Applied Biosystems) 

and with different modules of the software package Lasergene 7.0 (DNASTAR, Inc, Madison, 

Wisconsin). 

 

3. Analysis of 5′ Untranslated Region (UTR) of CPLX2 

Selecting Single-Nucleotide Polymorphisms (SNPs) in 5' region of CPLX2: For SNP selection, a list 

of potential tag SNPs was created using Haploview26 (http://www.broad.mit.edu/haploview 

/haploview/) with the genomic region Chr5:175,149,893..175,243,629. Out of these tag SNPs, 

several SNPs with minor allele frequency (MAF) of at least >0.3 were selected to cover the 5' 

region of CPLX2. The SNPs rs6868608, rs2443541, and rs1366116 lie in putative promoter regions 

of the 2 different transcripts. The marker rs2243404 is located in the noncoding exon 1, and 

rs4242187, rs10072860, and rs4868539 cover the rest of the region. 

 

Genotyping: The selected SNPs were analyzed using Simple Probes (TIB Molbiol, Berlin, 

Germany) and called using the LightCycler 480 Genotyping Software implemented in the LightCycler 
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480 system (Roche, Mannheim, Germany). The reaction mixture (10 µL) was prepared with 40 ng 

of DNA in 384-well plates according to standard protocols (Roche). The concentration of MgCl2 

and the Genotyping Master Mix were adapted for each assay. The cycle conditions were as follows: 

denaturation of the template DNA with 95°C for 10 min, amplification of the target DNA for 45 

cycles of (1) 95°C for 10 s, (2) 60°C for 10 s, and (3) 72°C for 15 s (temperature ramp rate 4.6°C/s 

in steps 1 and 3 and 2.4°C in 2). Melting curve analysis was performed with 30 s of 95°C, 40°C for 

2 min (ramp rate 2.0°C/s) and then a continuous ramping to 75°C with 3 acquisitions per °C. The 

temperatures for the melting peaks in each assay are listed in eTable 1. In each run, 8 positive 

controls (hgDNA; Bioline) and negative water blanks were included for quality and internal control 

purposes. Overall, successfully genotyped markers amounted to 99.6% to 99.7%. 

 

4. Micro-RNA Analysis 

Human CPLX2 3′UTR Luciferase: The first 274 bp of the 3'UTR of CPLX2, containing SNP 

rs3822674 with either C or T allele, were PCR amplified from respective human samples. The 

following primers were used: 

hCPLX2_3′UTR forward: 5′-GCGTCTAGACCAGGCCTCCTGCCCCAGC-3′ 

hCPLX2_3′UTR reverse: 5′-CGCGCGGCCGCACGACCTTAGGCTTCCTGAGGGG-3′. 

 

The cloning into the Renilla luciferase vector phRL-SV40 (Promega, Mannheim, Germany) was 

performed using XbaI and NotI restriction enzyme sites. The resulting constructs (phRL-C CPLX2-

3′UTR and phRL-T CPLX2-3'UTR) were verified by sequencing. 

 

Luciferase Assays: Neuro2a (N2a) cells (LGC Standards GmbH, Wesel, Germany) were plated in 

96-well cell culture plates (NUNC, Langenselbold, Germany) at 15000 cells per well in DMEM 

supplemented with 5% FCS without antibiotics. At 16 to 18 h after plating, cells were transfected 

with Lipofectamine 2000 (Invitrogen, Karlsruhe, Germany) using the manufacturer’s protocol. In 

each well, 1 ng of phRL-SV40 (vector without 3'UTR, C or T construct) and 1 pg of pCMV-FFluc-

control vector (Promega) were cotransfected with/without 1 pmol of hsa-miR-498 (Ambion, Foster 

City, California). For each treatment, 6 replicates were performed. The dual-luciferase reporter 

assay (Promega) was used according to the manufacturer’s protocol. At 24 h after transfection, cells 

in each well were lysed using 30 µL Passive Lysis Buffer (Promega). The plates were incubated for 

15 min at room temperature with slight shaking (200 rpm). Lysates were assayed immediately or 

24



 

© 2010 American Medical Association. All rights reserved. 

frozen at −20°C. Prior to measurement, lysates were transferred into a black plastic microtiter plate. 

Measurements were performed with the microplate reader Mitras LB940 (Berthold Technologies, 

Regensdorf, Switzerland) and associated software MicroWin 2000. Renilla values were divided by 

the corresponding firefly readings producing values expressed as relative luciferase units (RLU). 

 

5. Analysis of Peripheral Blood Mononuclear Cells (PBMCs) 

PBMCs of schizophrenic patients with 1 of the 3 different genotypes (CC, CT, or TT) at the SNP 

rs3822674 in the 3' UTR were isolated using the standard Ficoll-Paque Plus isolation procedure (GE 

Healthcare, Munich, Germany). For RNA isolation the miRNeasy Mini Kit (Qiagen, Hilden, 

Germany) was used. A total of 1 µg RNA, a mixture of oligo dT and hexamer primers and dNTPS 

(10mM each) were used for the transcription into cDNA using 200 U SuperScriptIII (Invitrogen) in 

a 20-µL reaction. The mixture was incubated for 10 min at 25°C, 45 min at 50°C, followed by 45 

min at 55°C. 

 

For the quantitative reverse transcription (qRT)PCR, the cDNA was used 1:10 diluted and 4 

replicates per sample were performed; 5 µL Power SYBR mix (Applied Biosystems) and 1 pmol of 

each primer (see below) were added. The following cycling profile was used for the LightCycler 

480 system (Roche): preheating step at 95°C for 10 min; 45 cycles of (1) 95°C for 15 s, (2) 60°C for 

1 min. Cycle threshold (CT) values for CPLX2 were standardized to CT values of GAPDH. 

 

hCPLX2_ qRT-PCR forward: 5′-TTTGGTGAGAAGCCAATTCC-3′ 

hCPLX2_qRT-PCR reverse: 5′-CATCCCCACACAACTGACTG-3′ 

hGAPDH_ qRT-PCR forward: 5′-CTGACTTCAACAGCGACACC-3′ 

hGAPDH_qRT-PCR reverse: 5′-TGCTGTAGCCAAATTCGTTGT-3′. 

 

III) Statistical Analyses 

 

To evaluate the experimental data (animal study, expression experiments), GraphPad PRISM 

version 5.01 for windows was employed. For the expression studies, Mann-Whitney U test, 2 tailed, 

was applied; for the animal data, 2-way analysis of variance for repeated measures was used. 

Statistical analyses of the SNPs studied either by sequencing or by direct genotyping were 

performed using SPSS for windows version 17.0 (https://www.spss.com/de) and R2.8.1 

(http://cran.r-project.org). Correlations of the 3 neuropsychological target variables (executive 
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functioning, reasoning, and verbal learning/memory) and the constitutive variable (premorbid 

intelligence) were assessed using Pearson product-moment correlation.27 Cronbach α coefficient28 

was determined for estimation of internal consistency of the 3 target variables. 

 

All metric phenotypic variables were standardized by Blom Transformation29 prior to statistical 

analysis. The latter is a probit transformation of the ranks ri obtained on all n nonmissing values of a 

selected phenotype,  

( ))4/1/()8/3(1 +−Φ= − nry ii   

where Φ−1 is the quantile function of the standard normal distribution. The resulting standardized 

phenotypes are normally distributed with zero mean and variance one. Analysis of covariance was 

employed to compare means of metric phenotypic variables for genotypes at each marker, assuming 

a codominant model and adjusting for covariates sex and age, in case of premorbid intelligence also 

for non-German speakers with language problems (8.6% of the total sample; 1.9% had to be taken 

out completely due to severe language difficulties). To adjust for multiple testing, a permutation 

procedure was carried out as follows: Let K denote the observed number of P values <.05 for a trait 

or for a set of m traits on the 11 CPLX2 markers. The multiple-testing–adjusted P value is the 

probability to obtain at least K P values <.05 on the respective set of tests by chance under the null 

hypothesis of no genotype-phenotype association. The latter was simulated by generating n = 10000 

replications of the original sample, each with permuted assignment of the individual phenotype 

(consisting of sex, age, and cognitive trait values). This conserves the underlying genomic/genotype 

structure for each individual. The program Haploview version 4.126 was used to evaluate the CPLX2 

markers (test of Hardy-Weinberg equilibrium for each marker, calculation of D’ between SNP pairs, 

and identification of linkage disequilibrium [LD] blocks using the Solid Spine of LD method). 

 

Haplotype analyses were performed using UNPHASED v3.0.13,30 PLINK v1.06,31 and SAS v9.1.32 

UNPHASED was used for haplotype association analyses of binary categorical variables, carrying 

out likelihood ratio tests in a log-linear model through unconditional logistic regression adjusting 

for age and sex. P values provided in the manuscript for the case-control study are nominal. The 

genomic analysis package PLINK was used for the estimation and tabulation of all possible 

individuals’ haplotype phases and the corresponding posterior probabilities (ie, given genotype 

data) for posterior analyses of quantitative traits in SAS. The latter employs a linear model on the 

Blom-transformed cognitive trait values, allowing for ambiguous haplotypes by weighted regression 
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with individual haplotype probabilities as weights. The model includes variables for all haplotypes 

at a selected location (all sample frequencies were >1%), adjusts for covariates sex, age, and for 

marker genotype at other associated CPLX2 regions (being in low LD with the considered 

haplotype gene region). For premorbid intelligence estimates, the data had to be additionally 

adjusted for nonnative German speakers with language problems (8.6% of our sample). Due to 

severe language problems, 1.9% of the sample had to be excluded. The trait mean given an 

individual’s genotype data is based on an additive model of haplotypes assuming a normal trait 

distribution. 

 

IV) Database Sequence Analyses of CPLX2 Gene 

To explore how a single base pair substitution might influence expression of CPLX2 and therefore 

cognition, several sequence analyses were performed. In order to reject the existence of other genes 

in the analyzed region, BLAST search33 was performed (http://blast.ncbi.nlm.nih.gov/Blast.cgi) 

using our sequence and its reverse complement. Furthermore, sequence similarities regarding 

microRNAs were ascertained with the program miRAlign34 (http://bioinfo.au.tsinghua.edu.cn 

/miralign) and the existence of known microRNAs in the region of interest was also checked by 

searching the microRNA database of the Sanger Institute (http://microrna.sanger.ac.uk/cgi-bin 

/sequences). Additionally, putative target sites for known microRNAs were analyzed with 

TargetScan35 (http://www.targetscan.org/). A few of these predicted binding sites were in the region 

of rs3822674. Therefore, we performed a ΔΔG prediction analysis for both alleles of rs3822674 and 

different microRNAs (http://genie.weizmann.ac.il/pubs/mir07/mir07_prediction.html). The analysis 

was performed with the first 274 bp of the 3′UTR of CPLX2. Conservation status in CPLX2, and 

specifically in the regions of the SNPs, was evaluated by aligning the sequences of the exons, 

introns, the region around the SNPs (±200 bp) and the single SNP position (eFigure 2 and eTable 

8). For this purpose, we used the 28 species comparison method based on Siepel et al, 2005,36 

implemented in the UCSC (http://genome.ucsc.edu) Web site. 

 

V) Behavioral Studies in Mice 

 

Animals: The gene targeting strategy for the Cplx2-null mutant mice was described previously.28 

Behavioral experiments were performed after more than 10 backcrosses to the C57BL/6NCrl 

(Charles River Laboratories, Sulzfeld, Germany) mouse strain, and employed age-matched male 

WT (n = 25) and Cplx2-null mutant (n = 35) littermates. Mice were housed at 4 to 5 per cage in a 
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room with a 12-h light-dark cycle (lights on at 09:00 h) with ad libitum access to food and water. 

The age of mice at the beginning of testing was 10 months. Behavioral tests were conducted in a 

blind fashion during the light phase of the day from 10:00 until 17:00 h. All experiments were 

performed with permission of the Bezirksregierung Braunschweig (Local Animal Care and Use 

Committee) in accordance with the German Animal Protection Law. 

 

Juvenile Parietal Cryolesion29: At murine puberty (age 28 days), male mice were anesthetized with 

intraperitoneal (IP) injection of 0.25% tribromoethanol (Avertin; SIGMA-Aldrich, Taufkirchen, 

Germany) (0.125 mg/g). The parietal skull was exposed through scalp incision and a freezing lesion 

was placed through the intact skull on the right parietal cortex (coordinates from bregma: 1.5 mm 

posterior, 1.5 mm lateral). A cone-shaped copper cylinder with tip diameter of 1 mm was cooled 

with liquid nitrogen (−183°C). Using a stereotactic device, the tip was placed in direct contact with 

the exposed parietal skull and kept in place for 60 s. Sham-operated animals went through the same 

procedure without cooled metal cone. 

 

Morris Water Maze: Spatial learning and memory was assessed in a water maze as described 

previously.37,38 A large circular tank (diameter, 1.2 m; depth, 0.4 m) was filled with opaque water 

(25° ± 1°C, depth, 0.3 m) and the escape platform (10 cm × 10 cm) submerged 1 cm below the 

surface. Mouse swim patterns were monitored by a computer and video-tracking system Viewer 2 

(Biobserve GmbH, Bonn, Germany). Escape latency, swim speed, path length, and trajectory of 

swimming were recorded for each mouse. During the first 2 days, mice were trained to swim to a 

visible platform (visible platform task) marked with a 15-cm-high black flag and placed 

pseudorandomly in different locations across trials (nonspatial training). The extra-maze cues were 

hidden during these trials. After 2 days of visible platform training, hidden platform training (spatial 

training) was performed. For 8 days, mice were trained to find a hidden platform (ie, the flag was 

removed) that was located at the center of 1 of the 4 quadrants of the pool. The location of the 

platform was fixed throughout testing. Mice had to navigate using extra-maze cues that were 

located on the walls of the testing room. Every day, mice went through 4 trials with an intertrial 

interval of 5 min. The mice were placed into the pool facing the side wall randomly at 1 of 4 start 

locations and allowed to swim until they found the platform, or for a maximum of 90 s. Any mouse 

that failed to find the platform within 90 s was gently guided to the platform. The animal then 

remained on the platform for 20 s before being removed from the pool. The next day after 

completion of the hidden platform training, a probe trial was conducted in order to determine 
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whether mice used a spatial strategy to find the platform or not. For that purpose, the platform was 

removed from the pool and mice were allowed to swim freely for 90 s. The percentage of time spent 

in each quadrant of the pool as well as the number of times the mice crossed the former position of 

the hidden platform were recorded. 
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eTable 1. Allele-Specific Melting Temperatures for Simple Probe Assays 
 
 Alleles 
rs6868608 A T 
  Melting °C 53 49 
   
rs2443541 C T 
  Melting °C 62 54 
   
rs2243404 C T 
  Melting °C 66 58 
   
rs4242187 C T 
  Melting °C 63 55 
   
rs10072860 G T 
  Melting °C 61 55 
   
rs4868539 A G 
  Melting °C 65 58 
   
rs1366116 C T 
  Melting °C 55 62 
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eTable 2. Characteristics of Analyzed SNPsa 

 
Marker Name MAF Position 

1 rs6868608 T: 0.360 175,150,010 
2 rs2443541 T: 0.317 175,154,594 
3 rs2243404 T: 0.317 175,156,222 
4 rs4242187 T: 0.467 175,176,703 
5 rs10072860 T: 0.457 175,195,299 
6 rs4868539 A: 0.458 175,212,047 
7 rs1366116 C: 0.442 175,230,137 
8 rs3892909 C: 0.389 175,238,197 
9 rs3822674 C: 0.467 175,239,862 

10 rs56934064 - 175,239,899 
11 + 251 Ex6a - 175,239,905 

 
Abbreviations: MAF, minor allele frequency; SNP, single-nucleotide polymorphism. 
aDisplayed are the analyzed markers with their official symbols, their minor allele frequencies 
according to NCBI, and their exact position on chromosome 5. 
bMarker 11 (+251 Ex6) is a novel SNP. 
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eTable 3. Point Mutations Detected in the Sequenced Region of CPLX2 
 
 No. of SCZ/CON Substitution Mutation Type Position 
Coding sequence 

  168 Ex6 1 × SCZa G to G/A Missense 
(Gly to Arg) 175, 239, 625 

  72Ex5 1 × SCZ G to G/A Silent 175, 238, 589 
  94Ex4 1 × SCZ C to C/A Silent 175, 238, 609 

  130Ex5 1 × CON C to C/T Missense 
(Arg to Cys) 175, 238, 645 

Noncoding sequence 
  −6 Ex4 1 × SCZ G to G/A - 175, 238, 257 
  +20 Ex4 1 × SCZ C to C/G - 175, 238, 398 
  +21 Ex5b 3 × SCZ C to C/G - 175, 238, 713 
  −116 Ex6 1 × SCZ G to G/A - 175, 239, 341 
  −42 Ex6 1 × SCZ C to C/T - 175, 239, 415 

1 × SCZ   +31 Ex6 1 × CON G to G/A - 175, 239, 760 

  +84 Ex6 1 × CON T to T/A - 175, 239, 814 
  +104 Ex6 1 × CON T to T/C - 175, 239, 833 
 
Abbreviations: CON, control subjects; SCZ, schizophrenic subjects. 
aHealthy father of the affected patient is also carrier of this missense mutation. 
b+21 Ex5 is known as single-nucleotide polymorphism rs4077873; in our population the frequency is <1%. 
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eTable 4. Frequencies of Single SNP Analysis (Case-Control)a 
 

Genotypic Frequencies, 
% 

Allelic 
Frequencies, % SNP 

AA AT TT 

χ2b 
(P Value) A T 

χ2c 
(P Value) 

SCZ 35.1 46.0 18.9 58.1 41.9 rs6868608 CON 34.2 49.5 16.3 
3.58 
(.17) 59.0 41.0 

0.35 
(.55) 

  CC CT TT  C T  
SCZ 62.1 33.6 4.3 78.9 21.1 rs2443541 CON 60.5 35.1 4.4 

0.59 
(.74) 78.1 21.9 

0.43 
(.51) 

  CC CT TT  C T  
SCZ 63.8 32.0 4.2 79.8 20.2 rs2243404 CON 62.2 33.5 4.3 

0.60 
(.74) 78.9 21.1 

0.52 
(.47) 

  CC CT TT  C T  
SCZ 45.3 43.4 11.3 67.0 33.0 rs4242187 CON 45.0 42.1 12.9 

1.39 
(.50) 66.0 34.0 

0.43 
(.51) 

  GG GT TT  G T  
SCZ 23.8 48.7 27.5 48.2 51.8 rs10072860 CON 22.6 51.6 25.8 

1.81 
(.40) 48.4 51.6 

0.02 
(.88) 

  AA AG GG  A G  
SCZ 23.3 47.7 29.0 47.1 52.9 rs4868539 CON 23.9 45.9 30.2 

0.73 
(.69) 46.9 53.1 

0.03 
(.87) 

  CC CT TT  C T  
SCZ 15.5 44.8 39.7 37.9 62.1 rs1366116 CON 15.2 46.8 38.0 

0.84 
(.66) 38.6 61.4 

0.19 
(.66) 

  CC CT TT  C T  
SCZ 13.6 43.9 42.5 35.6 64.4 rs3892909 CON 13.0 45.5 41.5 

0.59 
(.74) 35.7 64.3 

0.01 
(.92) 

  CC CT TT  C T  
SCZ 25.6 49.2 25.2 50.2 49.8 rs3822674 CON 25.1 49.8 25.1 

0.09 
(.96) 50.0 50.0 

0.02 
(.90) 

  AA AG GG  A G  
SCZ 52.7 39.8 7.5 72.6 27.4 rs56934064 CON 51.7 41.8 6.5 

1.35 
(.51) 72.6 27.4 

0.00 
(.97) 

  CC CG GG  C G  
SCZ 7.6 39.4 53.0 27.3 72.7 +251 Ex6 CON 7.2 42.1 50.7 

1.72 
(.42) 28.2 71.8 

0.44 
(.51) 

 
Abbreviations: CON, control subjects; SCZ, schizophrenic subjects; SNP, single-nucleotide polymorphism. 
aThis table shows the case-control data for each marker. Test statistics and P values both for genotypic and 
allelic frequencies were calculated for each marker using χ2 test (b2 degrees of freedom, c1 degree of 
freedom). There are no significant differences between cases and controls regarding genotypic or allelic 
frequencies. All markers fulfilled the Hardy-Weinberg equilibrium criteria. 
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eTable 5. Pairwise Association Test on Cognitive Measures of Schizophrenic Patientsa 
 
 rs2443541 rs2243404 rs10072860 rs1366116 rs3892909 rs3822674 
Target Variables F Values (P Values) 

CT/TT 
7.27 (.007) 

CT/TT 
7.56 (.006) 

CT/TT 
10.06 (.002) 

TC/TT 
0.008 (.93) 

CC/TT 
7.12 (.008) 

CC/TT 
0.08 (.78) 

CC/TT 
1.65 (.20) 

CC/TT 
1.43 (.04) 

Combined 
(multivariate) 

 
CC/CT 

0.03 (.86)  
CC/CT 

3.35 (.07) 
CC/CT 

1.07 (.30) 
CC/TC 

5.20 (.02) 
Individual (univariate)       

CT/TT 
3.89 (.05) 

CT/TT 
5.83 (.02) 

GT/TT 
0.33 (.568) 

CC/TT 
0.68 (.41) 

CC/TT 
2.28 (.13) 

GG/TT 
5.83 (.02) Executive functioning 

CC/CT 
6.98 (.008) 

CC/CT 
3.79 (.05) 

GG/GT 
4.86 (.03)    

CT/TT 
9.92 (.002) 

CT/TT 
9.38 (.002) 

TC/TT 
2.01 (.16) 

CC/TT 
1.36 (.25) 

CC/TT 
3.63 (.06) 

CC/TT 
9.77 (.002) Reasoning 

   
CC/CT 

1.60 (.21) 
CC/CT 

0.16 (.69) 
CC/TC 

4.62 (.03) 
CT/TT 

3.64 (.06) 
CT/TT 

4.43 (.04) 
CT/TT 

5.71 (.02) 
CC/TT 

5.21 (.02) 
CC/TT 

6.79 (.009) 
CC/TT 

0.12 (.73) 
Verbal 
learning/memory 

CC/CT 
0.75 (.39) 

CC/CT 
1.31 (.25)   

CC/CT 
1.73 (.19)  

Constitutive variable       

Premorbid intelligence 

    

CT/TT 
9.65 (.002) 

CC/TT 
1.15 (.29) 

CC/CT 
1.10 (.30)  

 
aFor CPLX2 markers with significant global association test across all genotypes (main test Table 1), we 
show the test statistic (F values, 1 degree of freedom) and P values (P) of pairwise comparisons between 
genotype groups. Phenotype values were standardized by Blom transformation and adjusted for sex and age, 
and in the case of premorbid intelligence, also for nonnative German speakers with language problems (8.6% 
of the total sample; 1.9% had to be taken out completely due to severe language difficulties). Significant 
group comparisons (P<.05) are shown in bold.
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eTable 6. Multilocus Association Analysis for CPLX2a 
 
Haploblock 1 - 2 & 3 
Position rs2443541 rs10072860 3 marker haplotype rs1366116/rs3892909/rs3822674(miR-498 binding) 

Additive effects with respect to  
reference haplotype TTC (44.8% sample frequency) Modeled Effect Recessive 

T allele 
Additive 
G allele 

CCT TTT CTC CTT CCC TCT TCC 
Sample  
Frequency 

MAF 
21.0% 

MAF 
48.2% 31.8% 14.8% 2.9% 1.8% 1.6% 1.3% 1.1% 

Target Variables     

Combined F 
P 

8.21 
(.004) 

2.75 
(.10) 

1.44 
(.23) 

0.01 
(.91) 

17.88 
(<.0001)

0.52 
(.47) 

0.10 
(.75) 

2.90 
(.09) 

0.57 
(.45) 

Individual          
E 0.18 0.09 0.009 0. 002 −0.32 −0.12 −0.12 −0.21 0.004 

K (−0.05, 
0.42) 

(0.01, 
0.17) 

(−0.08, 
0.10) 

(−0.10, 
0.11) 

(−0.53, 
−0.12) 

(−0.35, 
0.11) 

(−0.40, 
0.17) 

(−0.50, 
0.09) 

(−0.33, 
0.33) Executive 

Functioning 
t 

P 
1.52 
(.13) 

2.31 
(.02) 

0.20 
(.85) 

0.05 
(.96) 

−3.09 
(.002) 

−1.03 
(.30) 

−0.80 
(.43) 

−1.38 
(.17) 

0.02 
(.98) 

           
E 0.24 0.06 0.09 0.06 −0.31 0.13 −0.02 −0.12 0.09 

K (0.01, 
0.46) 

(−0.01, 
0.13) 

(0.007, 
0.17) 

(−0.04, 
0.15) 

(−0.50, 
−0.12) 

(−0.10, 
0.37) 

(−0.29, 
0.24) 

(−0.41, 
0.17) 

(−0.23, 
0.41) Reasoning 

t 
P 

2.07 
(.04) 

1.57 
(.12) 

2.13 
(.03) 

1.12 
(.26) 

−3.14 
(.002) 

1.12 
(.26) 

−0.16 
(.87) 

−0.82 
(.41) 

0.54 
(.59) 

           
E 0.39 −0.004 0.02 −0.05 −0.40 −0.31 0.10 −0.31 −0.35 

K (0.15, 
0.64) 

(−0.08, 
0.08) 

(−0.07, 
0.11) 

(−0.16, 
0.05) 

(−0.61, 
−0.19) 

(−0.55, 
−0.07) 

(−0.19, 
0.39) 

(−0.61, 
−0.01) 

(−0.68, 
−0.02) 

Verbal 
Learning/ 
Memory t 

P 
3.18 

(.002) 
−0.10 
(.92) 

0.39 
(.70) 

−0.96 
(.34) 

−3.71 
(.0002) 

−2.51 
(.01) 

0.68 
(.50) 

−2.04 
(.04) 

−2.10 
(.04) 

Constitutive 
Variable          

E 0.13 0.03 0.03 −0.15 −0.30 −0.17 −0.04 −0.39 0.08 

K (−0.11, 
0.38) 

(−0.05, 
0.11) 

(−0.06, 
0.12) 

(−0.26, 
−0.05) 

(−0.52, 
−0.09) 

(−0.41, 
0.08) 

(−0.34, 
0.26) 

(−0.70, 
−0.09) 

(−0.25, 
0.40) Premorbid 

Intelligence 
t 

P 
1.07 
(.29) 

0.81 
(.42) 

0.67 
(.50) 

−2.81 
(.005) 

−2.80 
(.005) 

−1.35 
(.18) 

−0.26 
(.79) 

−2.50 
(.01) 

0.45 
(.65) 

 
Abbreviation: MAF, minor allele frequency. 
aMultilocus association analysis of multivariate and univariate cognitive phenotypes on CPLX2 is based on combined 
analysis of all markers showing evidence for association in the single locus analyses (main Table 1). In CPLX2 
haploblock 1, the 2 associated markers are highly correlated. We reduced to the marker rs2443541 and modeled a 
recessive effect of the minor T allele. All other genetic effects were modeled as additive effects on the age- and sex-
adjusted trait mean; premorbid intelligence was additionally adjusted for nonnative German speakers with language 
problems (8.6% of the total sample; 1.9% had to be taken out completely due to severe language difficulties). Modeled 
additive effects were: Marker rs10072860 genotype (low linkage disequilibrium [LD] with all other associated markers) 
and 3 marker haplotype effect for high LD markers rs1366116/rs3892909/rs3822674 (located in CPLX2 haploblocks 2 
and 3). In the sample, a total of 8 haplotypes was found. All had sample frequencies >1%, where TTC was most 
frequent. The reference group of our model were haplotype TTC and major rs10072860 allele homozygotes who carried 
maximally 1 T allele for rs2443541. Shown are estimated effect strength (E) with 95% confidence interval (K) and test 
statistic (F or t value, 1 degree of freedom) as well as P value (P). Like Cohen’s d, E quantifies the genetically induced 
change of mean trait value relative to the standard deviation of the trait. All the traits have been standardized to zero 
mean and variance one by Blom transformation, larger trait values correspond to better performance. 
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eTable 7. Association Analysis of CPLX2, Testing the Effect of One Regional Variant  
(CTC Haplotype in CPLX2 Haploblocks 2 & 3) Adjusted for All Other Associated  
CPLX2 Regionsa 
 
Haploblock 1 - 2 & 3 

Position rs2443541 rs10072860 3 Marker Haplotype rs1366116/rs3892909/rs3822674(miR-498 

binding) 

Modeled Effect Recessive 
T Allele 

Additive 
G Allele 

Additive Effects of Haplotype CTC Compared to Rest 
(Pooling Remaining 7 Haplotypes) 

Sample 
Frequency 

MAF 
21.0% 

MAF 
48.2% 2.9% 

Significance 
Threshold 0.05 0.05 0.05/8 = 0.00625 (adjustment for multiple models)b 

Target 
Variables  

F 8.21 6.05 19.29 Combined P (.004) (.01) (<.0001) 
Individual  

E 0.17 0.09 −0.32 
K (−0.06, 0.40) (0.02, 0.16) (−0.52, −0.12) 
t 1.43 2.58 −3.10 

Executive 
Functioning 

P (.15) (.01) (.002) 
     

E 0.26 0.09 −0.34 
K (0.04, 0.48) (0.02, 0.15) (−0.53, −0.15) 
t 2.31 2.69 −3.56 Reasoning 

P (.02) (.007) (.0004) 
    

E 0.37 0.01 −0.39 
K (0.13, 0.61) (−0.06, 0.08) (−0.59, −0.18) 
t 2.99 0.31 −3.66 

Verbal 
Learning/ 
Memory 

P (.003) (.76) (.0003) 
Constitutive 
Variable  

E 0.11 0.06 −0.28 
K (−0.14, 0.35) (−0.010, 0.13) (−0.49, −0.07) 
t 0.86 1.76 −2.62 

Premorbid 
Intelligence 

P (.39) (.08) (.009) 
 
Abbreviation: MAF, minor allele frequency. 
aPresented is the multilocus association analysis of multivariate and univariate cognitive phenotypes on 
CPLX2. Considered was the class of multilocus models which selects 1 of the 8 observed haplotypes at 
rs1366116/rs3892909/rs3822674 to compare it with respect to all remaining haplotypes, pooling the latter 
into 1 group. We tested the additive effect of haplotype CTC (with multiple testing adjustment) on the age- 
and sex-adjusted trait mean (premorbid intelligence is additionally adjusted for nonnative German speakers 
with language problems, amounting to 8.6% of the total sample; 1.9% had to be taken out completely due to 
severe language difficulties), while adjusting also for the effects of the other 2 associated CPLX2 regions. 
The latter are represented by rs2443541 genotype (recessive effect of minor allele) and rs10072860 genotype 
(additive effect of minor allele). The reference group has at most 1 T allele for rs2443541, is homozygous for 
the major allele of rs10072860 and does not have haplotype CTC at rs1366116/rs3892909/rs3822674. Shown 
are estimated effect strength (E) with 95% confidence interval (K) and test statistic (F or t value, 1 degree of 
freedom) as well as P value (P). Like Cohen’s d, E quantifies the genetically induced change of mean trait 
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value relative to the standard deviation of the trait. Prior to statistical analysis, all traits have been 
standardized to zero mean and variance one by Blom transformation. Larger trait values correspond to better 
performance. 
bA total of 8 models are possible, each comparing a different haplotype to the respective pooled group of all 
other haplotypes. 
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eTable 8. Species Conservationa 
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rs
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64
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rs
56

93
40

64
 

+ 
25

1 
Ex

6 

Human A C C C T G T T T A G 
Chimp A T T T G G C T N N N 
Orangutan A T T T N G T T T G N 
Macaque A C T T G G T T T G N 
Rhesus A C T T G G T T T T G 
Bushbaby A C C T T = T = = = = 
Rat = C C - C - T C T T G 
Mouse = C C = C - T T T T G 
Dog = C T T A - C T T T G 
Cat = = T T A G C T T T G 
Cow = C T G = A T T T T G 
Tenrec = C T A = N C C T T - 
MAF 
(CON) T:0.41 T:0.22 T:0.21 T:0.34 G:0.48 A:0.47 C:0.39 C:0.36 T:0.50 G:0.27 C:0.28 

MAF 
(SCZ) T:0.42 T:0.21 T:0.20 T:0.33 G:0.48 A:0.47 C:0.38 C:0.36 T:0.50 G:0.27 C:0.27 

MAF 
(CEU)b T:0.37 T:0.31 T:0.32 T:0.47 T:0.47 A:0.44 C:0.44 C:0.39 C:0.47 ND ND 

 
Abbreviations: CON, control subjects; MAF, minor allele frequency; N, no sequence available; ND, no data 
available; SCZ, schizophrenic subjects;  =, 1 or more nonalignable basepairs in this region; -, no bases in the 
aligned species, possibly due to the lineage-specific deletion between the aligned block in the aligning 
species. 
aThe table shows single base pair alignments at the exact position of the analyzed SNPs in CPLX2 for 
selected species. MAFs in CON and SCZ subjects are comparable and similar to the ones reported in the 
HapMapb project. 
bBased on HapMap data. 
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eFigure 1A 
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eFigure 1B 
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eFigure 1. Influence of CPLX2 Genotypes on Cognitive Measures of Schizophrenic Patients 
A. Presented are box plots of target and constitutive phenotypes (raw data), stratified by CPLX2 genotypes. Higher 
phenotype values correspond to better cognition. For executive functioning, we display negative execution times, omit 
(for illustration purposes) the lower 12% of the data, and give instead the lowest extreme value. Highlighted are 
phenotype-genotype pairs with significant global association test (Table, main text), indicating significant pairwise 
genotype comparison by *P < .05 and **P < .01 (eTable 5). Statistical testing was performed on the Blom-transformed 
phenotypes, adjusting for age and sex, and in the case of premorbid intelligence, also for nonnative German speakers 
with language problems (8.6% of the total sample; 1.9% had to be taken out completely due to severe language 
difficulties). Minimal and maximal available sample sizes (n) are displayed at the bottom of the graph. B. Additional 
full (uncropped) presentation of executive functioning data. 
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eFigure 2. Conservation Status of the CPLX2 Gene Across 28 Species 
The figure shows the mammalian and vertebrate conservation of CPLX2. Also displayed are the different transcripts, 
predicted CpG islands, and the analyzed markers. The exons of CPLX2 seem to be highly conserved (high blue peaks). 
For single-marker analysis, see eTable 8. 
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3. A CAG REPEAT POLYMORPHISM OF KCNN3 PREDICTS SK3 
CHANNEL FUNCTION AND COGNITIVE PERFORMANCE IN 
SCHIZOPHRENIA 

 

3.1 OVERVIEW OF PROJECT II 
 
Small-conductance, Ca2+-activated K+ channels (SK) are voltage independent K+ channels 

that can be found in different types of neurons and are activated by raises in intracellular 

calcium. For appropriate action, they need to be assembled in a multi-protein complex 

comprising casein kinase 2, protein phosphatase 2A, and calmodulin that is constitutively 

bound to the carboxy-terminus (C-terminus) (Pedarzani and Stocker, 2008). They contribute 

to the afterhyperpolarization that follows action potentials and control repetitive firing 

patterns. It is strongly believed that they are important players in controlling dendrite 

excitability, synaptic transmission and synaptic plasticity (Faber, 2009). 

 

Three SK channel subtypes are expressed in mammalian brain which share high homology in 

the transmembrane domain but show divergence in the C- and N-terminus. SK1 expression is 

restricted to the brain, whereas SK2 and SK3 are as well expressed in peripheral tissue 

(Kohler et al, 1996). In the brain, SK1, SK2 and SK3 have partially overlapping but distinct 

distribution patterns, with SK1 and SK2 frequently expressed in the same neurons, and SK3 

presenting a complementary distribution (Rimini et al, 2000; Sailer et al, 2004). The exact 

localization is controversially discussed; some immunofluorescence studies suggest a 

presynaptic localization (Obermair et al, 2003; Roncarati et al, 2001) whereas more 

functional studies also support a post-synaptic localization (Cai et al, 2004; Faber et al, 2005).  

 

Several studies in vitro and in vivo have shown that blocking SK channels with apamin leads 

to a conversion from tonic to burst firing in cell culture (Wolfart et al, 2001), and to enhanced 

LTP and improved learning in mice (Stackman et al, 2002). Unfortunately, the specific 

contribution of the subtypes is difficult to assess due to the lack of subtype-specific 

pharmacological agents. To circumvent this problem of specificity, some mouse models have 

been analyzed so far and have shed some light on specific SK channel function. Mice 

overexpressing SK2 show selective deficits in  Morris water maze and fear conditioning 

(Hammond et al, 2006). Conditional overexpression of SK3 leads to defects in respiration and 

parturition (Bond et al, 2000), whereas doxycycline-dependent SK3 null mutant mice show 

alterations in tests of depressive behavior and cognition (Jacobsen et al, 2009; Jacobsen et al, 
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2008). Interestingly, aged mice, showing deficits in learning and memory tasks, have 

increased levels of SK3 in the brain, suggesting a contribution of SK3 to the age-dependent 

decline in cognitive functions (Blank et al, 2003). 

 

Considering these functional consequences of SK dysregulation, it seems reasonable to 

implicate these ion channels as well in disease. Indeed, there has been a major focus on SK3. 

The encoding gene KCNN3 maps to chromosome 1q21-22 (Austin et al, 1999) and encodes a 

protein of 731 amino acids containing two adjacent polyglutamine arrays in its N-terminal 

domain whereby the second one is highly polymorphic (Chandy et al, 1998; Wittekindt et al, 

1998). Taken into account that many neurological disorders are caused by triplet expansions, 

SK3 is an interesting candidate (Orr and Zoghbi, 2007). Several association studies have been 

performed, linking the SK3 polyglutamine repeat, among others, to migraine (Curtain et al, 

2005), anorexia nervosa (Koronyo-Hamaoui et al, 2004), ataxia (Figueroa et al, 2001), 

epilepsy (Vijai et al, 2005) and bipolar disorder (Guy et al, 1999).  

 

However, most studies focused for several reasons on schizophrenia. First, there is evidence 

for a major susceptibility locus at chromosomal location 1q21-22 (e.g. Brzustowicz et al, 

2000; Rosa et al, 2002). Second, a role of trinucleotide repeats in psychotic disorders has been 

discussed for quite some time (e.g. Vincent et al, 2000). Third, the findings on SK channel 

function provide interesting links to schizophrenia. Hyperpolarization of the membrane 

potential keeps NMDA receptors blocked. Hyperactive SK channels can therefore be 

expected to induce NMDA hypofunction. In contrast, blockage of SK channels in 

dopaminergic neurons induces bursting actions potentials, an activity associated with excess 

dopamine release (Shepard and Bunney, 1991). Thus, dysregulation of SK channels might 

lead to features that are implicated in the pathogenesis of schizophrenia (Gargus, 2006). 

 

The initial study on this topic by Chandy in 1998 indeed found a significant association of 

long alleles with schizophrenia (Chandy et al, 1998). However, after more than 20 studies 

have been conducted in different populations with contradictory results, a meta-analysis by 

Glatt and colleagues in 2003 concluded that the CAG repeat length in KCNN3 does not 

influence the risk for schizophrenia (Glatt et al, 2003). On the phenotype level there are only 

a few studies; longer CAG repeat length has been associated with increased negative 

symptoms (Cardno et al, 1999), anergia and paranoid symptoms (Ritsner et al, 2002) in 

samples much smaller than ours. 

 

http://dict.leo.org/ende?lp=ende&p=Ci4HO3kMAA&search=contradictory&trestr=0x8004
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Based on these findings, we decided to analyze the CAG repeat in exon 1 of KCCN3 in our 

GRAS population. We hypothesized that the repeat does not contribute to schizophrenia risk, 

but influences selective phenotypes in a normal range as proposed for sequence repeats 

(Fondon et al, 2008). Because of the modulatory function of SK3 expression on cognition in 

mice (Blank et al, 2003), we focused on cognitive readouts in our population. Furthermore, 

we aimed to understand the biological role of this repeat in channel expression and 

electrophysiological properties. 

 

In this study we were able to show for the first time a functional consequence of the CAG 

repeat length in KCCN3 on channel conductance. Long repeats lead to a less functional 

channel and are associated with better cognitive performance in humans. In contrast, SK3 

overexpressing mice, modeling an increased channel activity, show remarkable deficits in 

similar cognitive tasks. 
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KCNN3, encoding the small conductance calcium-activated potassium channel

SK3, harbours a polymorphic CAG repeat in the amino-terminal coding

region with yet unproven function. Hypothesizing that KCNN3 genotypes do

not influence susceptibility to schizophrenia but modify its phenotype,

we explored their contribution to specific schizophrenic symptoms. Using the

Göttingen Research Association for Schizophrenia (GRAS) data collection of

schizophrenic patients (n¼1074), we performed a phenotype-based genetic

association study (PGAS) of KCNN3. We show that long CAG repeats in the

schizophrenic sample are specifically associated with better performance

in higher cognitive tasks, comprising the capacity to discriminate, select

and execute (p<0.0001). Long repeats reduce SK3 channel function, as we

demonstrate by patch-clamping of transfected HEK293 cells. In contrast,

modelling the opposite in mice, i.e. Kcnn3 overexpression/channel hyperfunction,

leads to selective deficits in higher brain functions comparable to those

influenced by SK3 conductance in humans. To conclude, KCNN3 genotypes

modify cognitive performance, shown here in a large sample of schizophrenic

patients. Reduction of SK3 function may constitute a pharmacological target

to improve cognition in schizophrenia and other conditions with cognitive

impairment.
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INTRODUCTION

SK3, also known as KCa2.3, belongs to the family of tetrameric,

small conductance calcium-activated potassium channels (SK)

and is encoded by the KCNN3 gene on human chromosome

1q21.3. This gene is characterized by a polymorphic CAG repeat

in the N-terminal coding region (Chandy et al, 1998) whose

functional significance has not been elucidated yet (Bond et al,

2000; Frei et al, 2006).

Small conductance calcium-activated potassium channels are

widely disseminated in the central nervous system and in

peripheral tissues (Kohler et al, 1996). In the brain, SK1, SK2 and

SK3 are expressed in a partially overlapping but distinct pattern,

with comparable regional distributions in rats (Kohler et al,

1996; Stocker & Pedarzani, 2000), mice (Sailer et al, 2004), and

humans (Dror et al, 1999; Rimini et al, 2000). SK3 mRNA

expression is sparse in the neocortex, but prominent in lateral

septal and septohippocampal nuclei, amygdala, thalamus,

caudate-putamen, substantia nigra pars compacta, in mono-

aminergic neurons in the brain stem, including ventral

tegmental area, dorsal raphe nucleus, locus coeruleus,

hypothalamus and in Golgi interneurons in the cerebellum

(Stocker & Pedarzani, 2000). Expression of SK3 in hippocampus

is particularly found in the dentate hilus and the stratum

lucidum of CA3 (Sailer et al, 2004). In the ventral midbrain, SK3

mRNA is confined to areas that contain dopaminergic neurons

(Sarpal et al, 2004).

Neuronal SK channels are involved in the regulation of

excitability and firing patterns, neurotransmitter release, and

synaptic plasticity (for reviews see (Faber, 2009; Pedarzani &

Stocker, 2008; Stocker et al, 2004)). In dopaminergic neurons of

the substantia nigra, SK3 controls frequency and precision of

intrinsic pacemaker activity as shown in mouse brain slices

(Wolfart et al, 2001). Apamin, a selective SK channel blocker,

enhances bursting activity of these neurons in rats in vivo (Ji &

Shepard, 2006). Due to the lack of SK subtype-specific

pharmacological agents, the differential contribution of SK1,

SK2 and SK3 to behaviour and cognition is difficult to assess, but

mouse models have shed some light on SK3 function. For

example, SK3 is upregulated in hippocampus of aged mice, and

its downregulation by antisense oligonucleotides reverses age-

related deficits in hippocampus-dependent memory tasks and

long-term potentiation (Blank et al, 2003). Abnormal respiration

after hypoxia and disturbed parturition were reported in SK3

overexpressing mice but no striking deficits were identified in

SK3 null mutants (Bond et al, 2000). However, doxycycline-

dependent SK3 null mutant mice exhibited increased extra-

cellular striatal dopamine, enhanced hippocampal serotonin

release, and reduced hippocampal brain-derived neurotrophic

factor (BDNF) expression. These mice, exposed to chronic high-

dose doxycycline feeding, showed also alterations in tests of

depressive behaviour and cognition (Jacobsen et al, 2008,

2009).

Even though the functional significance of a variable

glutamine repeat length in the SK3 channel protein has

remained unclear, it has been investigated in the context of

certain pathologies in humans. An association of the CAG repeat
� 2011 EMBO Molecular Medicine
length of KCNN3 has been discussed for anorexia nervosa

(Koronyo-Hamaoui et al, 2002, 2007), migraine (Curtain et al,

2005; Mossner et al, 2005), ataxia (Figueroa et al, 2001),

epilepsy (Sander et al, 1999; Vijai et al, 2005) and schizophrenia

(Chandy et al, 1998) but most results remain quite equivocal.

Regarding schizophrenia, a disease-associated excess of longer

CAG repeats was reported (Chandy et al, 1998). In contrast,

family-based studies claimed a connection between shorter CAG

repeats and schizophrenia (Stober et al, 1998). A meta-analysis

concluded that overall, the CAG repeat length of KCNN3 does

not augment the risk of schizophrenia, although a small but

significant risk appeared associated with CAG repeats longer

than the modal value (Glatt et al, 2003). On the other hand, a

longer CAG repeat length has been linked to increased negative

symptoms in a British schizophrenic sample (Cardno et al,

1999), and in Jewish schizophrenic patients, where also anergia

and paranoid symptoms were found associated (Ritsner et al,

2002).

Based on the above delineated effects of SK3 on cognition in

mice (Blank et al, 2003), we hypothesized that SK3 genotypes

also influence cognitive performance in humans. In particular,

we assumed that SK3 genotypes might modify higher cognition

in schizophrenia rather than contributing to the actual risk of

developing the disease. The Göttingen Research Association for

Schizophrenia (GRAS) data collection enables us to follow this

hypothesis(Begemann et al, 2010; Ribbe et al, 2010). With

>1000 comprehensively phenotyped schizophrenic patients

and >3000 data points per subject, the GRAS data collection is

an exceptional basis to study genetic causes of or contributions

to the schizophrenic phenotype in a ‘phenotype-based genetic

association study (PGAS)’. This approach is different from and

complementary to the genome-wide association studies

(GWAS) on schizophrenia as a disease. Rather than searching

for ‘schizophrenia risk genes’, we explore the contribution of

genetic variants of candidate genes to schizophrenia-relevant

phenotypes.

We show here for the first time that a long CAG repeat length

in the KCNN3 gene leads to an electrophysiologically detectable

reduction in SK3 conductance. Importantly, long repeat lengths

are associated with better cognitive performance of schizo-

phrenic patients in tasks involving the capacity to discriminate,

select and execute. Increased SK3 channel activity in turn, as

modelled by Kcnn3 overexpression in mice, selectively leads to

remarkable deficits in a comparable set of higher brain

functions.
RESULTS

Case-control study: the CAG repeat length in the KCNN3 gene

is not associated with schizophrenia

The CAG repeat polymorphism in the KCNN3 exon 1 coding

region has been described in several primate species (Fig 1 A and

B).We first conducted a case-control study to explore a potential

role of the KCNN3 CAG repeat lengths sum of both alleles as a

genetic risk factor for schizophrenia. No significant difference in

the distribution of repeat lengths sum between cases (n¼ 1060)
EMBO Mol Med 3, 1–11 www.embomolmed.org
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Figure 1. SK3 CAG repeat lengths sum is associated with higher cognitive function in schizophrenia but does not constitute a genetic risk factor for the

disease.

A. KCNN3 is located at 1q21.3 and spans 162.8 kbp. The nine exons (boxes) encode two different splicing variants (1, 2); the coding region is shaded in grey.

The black line in exon1 indicates the position of the polymorphic CAG repeat.

B. The region around the CAG repeat is highly conserved among species.

C,D. Neither the distribution of the individual sum of repeat lengths of both alleles (C) nor that of the individual difference between repeat lengths of both alleles

(D) is different between schizophrenic patients (n¼1060) and healthy controls (n¼1135). Hence, these readouts of the SK3 CAG repeat polymorphism do

not support a genetic risk for developing schizophrenia.

E,F. In contrast, the PGAS approach allows identification of a role for the SK3 CAG repeat polymorphism in higher cognitive function.

E. Intercorrelation network of cognitive target variables (dark ovals) and cognitive control variables (light ovals) in the GRAS population of schizophrenic

patients. Line thickness indicates the degree of correlation between two respective tests after standardization by Blom transformation and adjustment for

covariates sex, age, antipsychotic medication and negative symptoms.

F. Scatter plot of the covariate-adjusted composite score calculated asmean of all standardized (Blom transformed) cognitive target variables. Adjustedwas for

covariates sex, age, antipsychotic medication and negative symptoms. Linear regression analysis reveals a significant effect (p< 0.0001) of allelic repeat

lengths sum on the composite score.

49
and healthy controls (n¼ 1135) was found (Fig 1C; x2¼ 5.69,

p¼ 0.82, evaluated withMonte Carlo sampling on 1000 runs; for

details see Supporting information). Also, no gender influence

was observed. An association analysis of single allele repeat

lengths instead of allelic repeat lengths sum between cases and

controls did not yield significant distribution differences either

(data not shown). Furthermore, the intraindividual difference of

repeat lengths as ameasure of marker heterogeneity did not vary

significantly between cases and controls (Fig 1D; x2¼ 4.12,

p¼ 0.65, 1000 Monte Carlo simulations). Thus, as assumed,

there is no evidence for a role of the SK3 CAG repeat length in the

risk to develop schizophrenia.
www.embomolmed.org EMBO Mol Med 3, 1–11
Phenotype-based genetic association study: the KCNN3

CAG repeat length is associated with higher cognition

in schizophrenia

Since the essence of the PGAS approach is not to identify potential

risk genes for schizophrenia but to understand the contribution of a

particular genotype to normal and to disease phenotypes, we

moved on to investigate the impact of KCNN3 on core phenotypes

of schizophrenia, i.e. cognition, positive and negative symptoms.

Following our hypothesis that SK3 may influence higher cognitive

functions, we analysed the CAG repeat polymorphism of the

KCNN3 gene with respect to neuropsychological test performance

of the GRAS sample of schizophrenic patients.We first constructed
� 2011 EMBO Molecular Medicine 3
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an intercorrelation network, comprising readouts of higher

cognition (encompassing capabilities of discrimination, selection

and execution) as target variables, and tests of motor-dependent

basic cognitive functions as cognitive control variables (Fig 1E).

Target variables included reasoning (LPS3), executive function

(TMT-B), word recognition (VLMT) and divided attention (TAP).

The target variables were internally consistent (Cronbach’s

a¼ 0.703), and used for the multivariate models. Cognitive

control variables were alertness (TAP), dotting and tapping, all

correlating with the cognitive target variables but likely differently

regulated. To investigate the influence on general intelligence, a

test for premorbid intelligence (MWT-B) was added as additional

cognitive control variable. In addition to cognition, PANSS positive

and PANSS negative symptoms were analysed as disease-related

control variables. Body length served as disease-unrelated control

variable (for a detailed description of all variables see Supporting

information). Sample characteristics regarding sociodemographic

and clinical variables are displayed in Table 1.

The distribution of allelic repeat lengths sum and allelic

repeat lengths difference in the schizophrenic population is

displayed in Table S1. Only the allelic repeat lengths sum proved

to be a genetic readout associated with our phenotypes of

interest. The influence of the sum of the repeat lengths of both

alleles was studied (i) by a multivariate regression model

considering the respective target or control phenotypes as

correlated outcomes (Table 2) and (ii) by a classification model

(Table S2). Additionally, uncorrected raw data is presented in

Table S3. The slope of the regression model estimates the

change of covariate-adjusted mean phenotype value per

additional repeat in the sum of repeat lengths of the two alleles.

The classification model estimates the difference in the

covariate-adjusted phenotype means between groups with

low (below-median;<35) and high (above-median;>35) repeat
Table 1. GRAS sample description: total sample and allelic repeat sum groups

Total GRAS sample

(n¼1060)

Sociodemographic variables

Age, mean� SD (range), y 39.67�12.75 (18–83)

Gender, No. (%), male 707 (66.7%)

Ethnicity, No. (%), caucasian 1008 (95.6%)

Years of educationc, mean� SD (range) 12.04� 3.05 (8–27)

Inpatients at assessment, No. (%) 449 (42.6%)

Clinical variables

Age at 1st episode, mean� SD (range), y 26.46�9.02 (5.40–73.86

CPZ, mean� SD (range) 683.83� 700.89 (0–7500.

Diagnosis, No. (%), schizophreniad 785 (74.5%)

Numbers of hospitalizations, mean� SD (range) 8.56�9.81 (0–97)

PANSS pos, mean� SD (range) 1.94� 0.89 (1–5.43)

PANSS neg, mean� SD (range) 2.60� 1.13 (1–6.57)

PANSS gen, mean� SD (range) 2.10� 0.74 (1–5.13)

GAF, mean� SD (range) 45.91�17.31 (5–90)

CGI, mean� SD (range) 5.55� 1.09 (2–8)

aLow (below-median;<35) and high (above median; >35) allelic repeat lengths sum
bStatistical methods used: Mann–Whitney-U or x2-tests.
cRating according to graduation/certificate; patients currently in school or in edu
dVersus schizoaffective disorders and other psychotic disorders/yet to be confirm

� 2011 EMBO Molecular Medicine
lengths sum. The results of the regression and the classification

model agree well. Both models show consistently that higher

sums of CAG repeats are associated with higher scores (better

performance) in the cognitive target but not the cognitive

control variables including premorbid intelligence, representing

the development-dependent intellectual state at disease onset.

Also, PANSS positive, PANSS negative and disease-unrelated

control variables are not influenced by repeat sums. Additional

individual univariate analyses confirmed that three out of four

single target variables included in the multivariate analysis are

significantly associated with CAG repeat lengths sum, while this

is not the case for any single control variable. For illustration,

the influence of the repeat lengths sum on the composite

cognitive phenotype is displayed as a simple regression line in

Fig 1F. To conclude, the PGAS approach reveals a role of the SK3

CAG repeat lengths for higher cognition, best characterized as

the cognitive steps ‘discriminate, select and execute’, but not for

psychopathological symptoms of schizophrenia.

Translational approach: SK3 overexpressing mice show

selective impairment in higher cognitive function

Based on above findings and earlier data indicating that SK3

negatively regulates cognition (Blank et al, 2003), we hypothe-

sized that a long CAG repeat length would result in a less

functional SK3 channel and better cognition, while a short

repeat length would lead to more efficient SK3 function and

worse cognitive performance. To test this hypothesis, we

analysed basic behaviour and cognition in a transgenic mouse

line in which the murine SK3 gene is overexpressed under

control of its own regulatory elements, enhanced in cis by the

tetracyclin-dependent transactivator (tTA) in the absence of any

doxycyclin (Bond et al, 2000). This SK3 overexpressing allele is

referred to as SK3-T in the following. The overexpression of SK3
, contrasted by removal of the median group

Low allelic repeat suma

(n¼462)

High allelic repeat suma

(n¼ 405)

pb

39.37� 13.04 (18–78) 39.31�12.18 (18–73) 0.765

301 (65.2%) 275 (67.9%) 0.392

437 (94.8%) 387 (96.3%) 0.064

11.92�2.91 (8–24) 12.15� 3.11 (8–24) 0.528

192 (41.7%) 167 (41.5%) 0.869

) 25.95�9.00 (5.40–73.86) 26.41� 8.74 (7.95–57.35) 0.423

00) 669.70�691.73 (0–6837.43) 710.66� 769.41 (0–7500.00) 0.875

339 (73.5%) 298 (74.1%) 0.972

8.41� 9.46 (0–97) 8.74�10.43 (0–82) 0.756

1.91�0.86 (1–5.00) 1.95� 0.90 (1–5.43) 0.558

2.56�1.07 (1–5.71) 2.59� 1.17 (1–6.29) 0.988

2.09�0.71 (1–4.88) 2.07� 0.76 (1–4.69) 0.423

46.25� 17.13 (8–90) 45.41� 17.26 (5–90) 0.441

5.55�1.07 (2–8) 5.56� 1.11 (2–8) 0.688

; individuals with an allelic repeat lengths sum of 35 were excluded (n¼193).

cational training are excluded.

ed.

EMBO Mol Med 3, 1–11 www.embomolmed.org
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Table 2. Association of SK3 repeat lengths sum with target and control phenotypes

Phenotypes Change of mean phenotype value

per additional repeat

Statistical test

estimate 95% confidence interval t-value (1df) p-value

Cognitive target variables:

Combined (multivariate) 0.0269 0.0104, 0.0434 3.1901 0.0014a

Individual (univariate)

Reasoning 0.0224 0.0008, 0.0440 2.0317 0.0425b

Executive function 0.0281 0.0062, 0.0500 2.5203 0.0119b

Word recognition 0.0331 0.0096, 0.0565 2.7680 0.0058b

Divided attention 0.0319 0.0069, 0.0570 2.5004 0.0126b

Cognitive control variables:

Combined (multivariate) 0.0132 �0.0039, 0.0304 1.5105 0.1310a

Individual (univariate)

Dotting 0.0163 �0.0059, 0.0385 1.4391 0.1505

Tapping 0.0142 �0.0079, 0.0363 1.2612 0.2076

Alertness 0.0115 �0.0105, 0.0335 1.0281 0.3042

Premorbid intelligence 0.0088 �0.0155, 0.0330 0.7090 0.4785a

Disease-related control variables:

PANSS positive symptoms 0.0051 �0.0186, 0.0288 0.4230 0.6724a

PANSS negative symptoms 0.0131 �0.0120, 0.0382 1.0236 0.3063a

Disease-unrelated control variable:

Body length 0.0151 �0.0042, 0.0344 1.5365 0.1248a

a,b Multiple testing corrected significance thresholds: afirst level of tests p�0.0100 (Bonferroni), bsecond level of tests p�0.0138 (permutation test with 50000

permutations to account for correlations between phenotypes).

Association analyses of allelic repeat lengths sum with mean value of target and control phenotypes. The analysed sample has a range of allelic repeat lengths

sums from 28 to 40, n¼ 952. Phenotypes were adjusted for sex and age, additionally for medication (all cognitive phenotypes, PANSS positive and PANSS negative

symptoms) and for negative symptoms (all cognitive phenotypes). All phenotypes were standardized to zero mean and variance one: larger values for cognitive

phenotypes correspond to better performance. Like Cohen’s d, the genetically induced effect size (change of mean phenotype value per additional repeat) is

quantified relative to the standard deviation of the trait. Rare extreme observations of allelic repeat lengths sums (below 28, above 40; n¼ 21) and non-native

German speakers with language problems (total of n¼87) were excluded from the analyses (to result in n: 1060�108¼ 952).
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in this model is illustrated in Fig 2A and B, comparing

hippocampal SK3 immunoreactivity in a wildtype and a SK3 T/T

mouse. Densitometric analysis of the SK3 specific bands

obtained by Western blot demonstrates the pronounced

increase in SK3 protein in hippocampus (p¼ 0.0029) and heart

(used as a control tissue; p¼ 0.0005) of SK3 T/T mice (Fig 2C).

Most basic behavioural tests were unaffected by SK3 over-

expression: Time spent in open arms of elevated plus maze

(Fig 2D) aswell as time spent in the different zones and velocity in

the open field (Fig 2E and F) were unchanged, indicating

comparable anxiety and activity levels in both experimental

groups. However, SK3 T/Tmice showed an increase in latency to

reach the wall when first put in the open field (p¼ 0.029; Fig 2G).

Exploratory activity in the hole board test was reduced in mice

overexpressing SK3 (p¼ 0.0004; Fig 2H). Importantly, motor

performance and motor learning, as evaluated in the 2-day rota-

rod testing, were comparable in both genotypes (Fig 2I). No

differences between genotypes were found in sucrose preference,

pre-pulse inhibition, and social interaction tests (Fig S1A–D).

In the visible platform training (2 days) of the Morris water

maze, there was no overall difference between SK3 T/T and WT

mice. Both experimental groups had similar latency to locate the

visible platform (2-way repeated measurement ANOVA: effect of

genotype F1,26¼ 0.23, p¼ 0.637), similar swim distance to the

platform (2-way repeatedmeasurementANOVA: effect of genotype

F1,26¼ 0.96, p¼ 0.337), and similar swim velocity (2-way repeated
www.embomolmed.org EMBO Mol Med 3, 1–11
measurement ANOVA: effect of genotype F1,26¼ 1.09, p¼ 0.306).

Notably, however, in the hidden platform testing, assessing the

ability to use extra-maze spatial cues to locate a submerged

platform, impaired spatial learning in SK3 overexpressing mice

became evident, with longer latencies to find the platform over the

trials (2-way repeated measurement ANOVA: effect of genotype

F1,26¼ 5.43, p¼ 0.028, Fig 2J) as well as longer swim distance to

the platform (2-way repeated measurement ANOVA: effect of

genotype F1,26¼ 11.17, p¼ 0.0025; not shown). Moreover, in the

probe trial, performed to determine whether mice use a spatial

strategy to find the platform, SK3 T/T mice spent less time in the

target quadrant (p¼ 0.033; Fig 2J, inset and Fig S1E). Along the

same lines, SK3 overexpressing mice displayed reduced freezing

behaviour in fear conditioningwhen tested 72h after training in the

same context (p¼ 0.036; Fig 2K), reflecting compromised

hippocampal memory. Significant differences between groups

were also observed in the cued memory test with SK3 T/T mice

showing a decreased freezing response to the conditioned tone

(p¼ 0.0008; Fig 2K). Taken together, overexpression of SK3,

similar to the short CAG repeat length genotype in humans, leads to

reduced performance in higher brain functions.

Mechanistic insight: SK3 channel conductance depends on

CAG repeat length

To test if the CAG repeat length indeed has an impact on channel

function, we expressed three different human SK3 isoforms,
� 2011 EMBO Molecular Medicine 5
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Figure 2. SK3 overexpressing (T/T) mice show selective deficits in higher cognition.

A,B. Comparative distribution of SK3 immunoreactivity in hippocampus (sagittal section) is presented for wildtype (A) versus SK3 T/T mice (B). Insets show

magnifications of stained granule neurons in dentate gyrus and pyramidal neurons in Ammon’s horn (CA2).

C. Densitometrical quantification of SK3 protein expression in hippocampus and heart of WT and SK3 T/T mice (n¼6–7; ��Student’s t-test, t1,12¼3.724,

p¼ 0.0029; ���Student’s t-test, t1,11¼4.902, p¼0.0005). SK3 expression is presented as % of ß-actin (ß-Act) and normalized to the WT. Sample Western blots

are shown below the bar chart. For quantification, the 74kDa bandwas used forWT (endogeneous SK3) and the 70kDa band for T/T (transgenic SK3 expression).

D. WT and T/T behaviour is unaltered in elevated plus maze. Presented is the percentage of time spent in open arms against the total time spent in both open

and closed arms.

E-G. No differences in open field are observed between genotypes regarding time spent in different zones (E) or velocity (F). The latency to reach the wall after

initial start from the centre of the open field (G) is significantly higher in SK3 T/T mice compared to WT (�Student’s t-test, t1,26¼ 2.318, p¼ 0.029).

H. In hole board, SK3 T/T mice show significantly less exploratory activity than WT (���Student’s t-test, t1,26¼ 4.110, p¼ 0.0004).

I. The two genotypes do not differ in motor performance/motor learning on rota-rod.

J. SK3 T/T mice demonstrate longer escape latency in the hidden platform task (�two-way repeatedmeasures ANOVA, F1,26¼ 5.43, p¼ 0.028); in the probe trial

(inset), SK3 T/T mice display absence of preference for the target quadrant (�Student’s t-test, t1,26¼ 2.250, p¼0.033).

K. In contextual and cue memory test of fear conditioning, SK3 T/T mice freeze less (�Student’s t-test, t1,26¼2.212, p¼0.036, ���Student’s t-test, t1,26¼ 3.779,

p¼ 0.0008). For all behavioural experiments: n¼ 13–15; data presented as mean� s.e.m.; two-sided Student’s t-tests used; � indicates p< 0.05, ��p<0.01

and ���p< 0.001.
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characterized by different repeat lengths and fused with

eGFP, in HEK293 cells and performed whole-cell patch

clamping (Fig 3). Cells transfected with the constructs

(eGFPhSK3(CAG)11, eGFPhSK3(CAG)18, eGFPhSK3(CAG)24)
� 2011 EMBO Molecular Medicine
showed intense fluorescence signal compatible with cell surface

expression (Fig 3A and B). No obvious localization or

quantitative differences among clones were observed under

epifluorescence microscopy, and the size of the expressed
EMBO Mol Med 3, 1–11 www.embomolmed.org
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Figure 3. KCNN3 CAG repeat length affects electrophysiological properties of SK3.

A. For electrophysiological measurements, the eGFPhSK3(CAG)n construct has been employed to generate clones with different repeat lengths. Indicated are

locations of the CAG repeat (labelled in orange), of the primers (labelled in purple) and of the restriction enzyme sites used for cloning.

B. Live transfected HEK293 cells show intense green fluorescent signal on the plasma membrane; cell nuclei are stained with Hoechst33342 (blue).

C. Western blot analysis of eGFP and SK3 demonstrates comparable SK3 fusion protein size and expression level of the different constructs in transfected cells.

D. The average SK3 current response (expressed as apamin-sensitive current density) for eGFPhSK3(CAG)11 (n¼8; green), eGFPhSK3(CAG)18 (n¼ 7; blue) and

eGFPhSK3(CAG)24 (n¼9; red) is displayed. The result of fitting is superimposed as a solid line. Error bars represent s.e.m.

E. Normalized apamin-sensitive current density (versus the corresponding individual current density maximum) for clones eGFPhSK3(CAG)11, eGFPhSK3(CAG)18

and eGFPhSK3(CAG)24. Inward rectification starting as early as at þ20mV is evident for eGFPhSK3(CAG)24. Colours as in panel D.
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proteins was comparable as predicted (Fig 3C), excluding

truncation artifacts. Measurement of apamin-sensitive current

density showed a significant reduction in eGFPhSK3(CAG)24 as

compared to eGFPhSK3(CAG)18 and eGFPhSK3(CAG)11. Overall

conductance (�95% confidence interval) calculated was

0.83� 0.002 (n¼ 9), 1.75� 0.002 (n¼ 7) and 2.72� 0.011

(n¼ 8) pA/pF, respectively (Fig 3D). The shape of the

current/voltage relationship for SK3 channels is strongly

inwardly rectifying (Grunnet et al, 2001). We observed a clear

rectification in cells expressing eGFPhSK3(CAG)24 already at

less depolarized potentials than in eGFPhSK3(CAG)11 and

eGFPhSK3(CAG)18. Plotting the average normalized current

against voltage, a gradual increase in the degree of rectification

between the different isoforms was observed. Voltage for half-

maximal block was 117.22� 0.395, 113.89� 0.402 and

61.251� 0.136mV for eGFPhSK3 (CAG)11, eGFPhSK3(CAG)18
and eGFPhSK3(CAG)24, respectively (Fig 3E). Qualitatively

identical results were obtained in control experiments with an

untagged expression of hSK3 clones (Fig S2). Overall, these data

support our hypothesis that a long CAG repeat length reduces

SK3 channel conductance.
www.embomolmed.org EMBO Mol Med 3, 1–11
DISCUSSION

We report here the surprising finding that a normal variant of the

gene encoding the small conductance calcium-activated potas-

sium channel SK3 predicts cognitive performance of patients

with schizophrenia. The discovery of KCNN3 CAG repeat

lengths influencing higher cognition in man was facilitated by a

PGAS on the grounds of our new schizophrenia patient

database, the GRAS data collection.

The role of simple sequence repeats as genetic modulators of

brain function and behaviour is quite well established, however,

in most cases the biological mechanisms involved are far from

clear (Fondon et al, 2008). Notably, the present study allows

mechanistic insight, elucidating the functional role of the

polymorphic glutamine repeats in the N-terminal coding region

of SK3. Although theN-terminus of the channel does not directly

contribute to the core structure of the pore, it may, as in many

other channels, form part of the internal vestibule and thereby

influence permeation properties. As documented here by whole-

cell patch-clamping, long CAG repeats reduce current amplitude

at depolarized potentials in the presence of internal Ca2þ. This
� 2011 EMBO Molecular Medicine 7
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reduced channel conductance is associated in schizophrenic

patients with better performance in higher cognitive tasks,

comprising the capabilities to ‘discriminate, select and execute’.

On the contrary, SK3 overexpression in mice, as a model of

increased channel function, leads to reduced cognitive abilities

in a similar set of tasks. Thus, SK3 conductance appears to be

inversely correlated with higher cognition.

The electrophysiological results obtained here with trans-

fected cells help to explain this conclusion which is somewhat

unexpected at first glance. Our data indicate an enhanced Ca2þ

block in the SK3 isoformwith the longest repeats as compared to

the shorter repeat variants, leading to an overall decreased

conductance at a given Ca2þ concentration in a physiologically

relevant range. This would generate different after hyperpolar-

ization depending on the length of the repeat, and ultimately

result in increased excitability, as shown for dopaminergic

neurons, where decreasing the activity of SK channels by

decreasing the apparent Ca2þ affinity changes the firing pattern

from a pacemaker to an irregular or bursting one (Ji et al, 2009).

The phenotypic effect of different CAG repeat or polyglutamine

lengths can also be independent of the electrophysiological

properties of the resulting channel, since it might alter the

affinity of RNA binding proteins and/or protein–protein

interactions (Jasinska et al, 2003; Orr & Zoghbi, 2007).

A ‘less is more’ feature does not seem to be entirely unusual

for potassium channels influencing cognitive readouts. Along

these lines, apamin treated mice show superior cognitive

behaviour, while overexpression of SK2 specifically leads to

cognitive impairment in similar tasks (Hammond et al, 2006;

Stackman et al, 2002). Also, disruption of the gene encoding

another type of potassium channel, the voltage-gated channel

BEC1/KCNH3, changes hippocampal neuronal activity as well

as synaptic plasticity, and enhances cognitive function in mice

(Miyake et al, 2009). A primate-specific isoform of yet another

member of the voltage-gated ether-à-go-go family, KCNH2

(ERG1), is highly expressed in post mortem brains of

schizophrenics. This shorter isoform appears to be inversely

correlated with cognition and to impair channel function

(Huffaker et al, 2009).

In our study, focusing on the CAG repeat polymorphism in

KCNN3, the gene encoding SK3, a small conductance calcium-

activated potassium channel, the distribution of repeat lengths

was comparable in both schizophrenic and healthy subjects.

This finding confirms the meta-analysis by Glatt et al (2003) and

points against a major role of this particular genetic marker for

the risk to develop schizophrenia. Also, the present study did

not substantiate an effect of glutamine repeat length on positive

or negative symptoms as reported for Jewish (Ritsner et al,

2002) or British schizophrenic patients (Cardno et al, 1999).

This discrepancy may be explained by ethnical differences or by

a potential bias due to the small sample sizes used in these

earlier studies (Cardno et al, 1999; Ritsner et al, 2002). In

agreement with the present findings on cognitive readouts in

schizophrenic patients, our results obtained with the Kcnn3

overexpressing mice further support a role of this gene in higher

cognition, whereas readouts of positive symptoms (e.g.

hyperactivity) or negative symptoms (e.g. social interaction,
� 2011 EMBO Molecular Medicine
sucrose preference) were not seen in the SK3 overexpressing as

compared to WT mice (Fig S1).

The observation that long glutamine repeats, and thus reduced

SK3 channel function, are equally disseminated in healthy

and schizophrenic subjects makes it very likely that the ‘long

repeat SK3 effect’ on higher cognition is not restricted to

schizophrenia, although functional proof in healthy individuals

and in other disease cohorts is still required. Nevertheless, the SK3

genotype clearly contributes to the cognitive phenotype of

schizophrenic patients. Even if traits of interest in schizophrenia

(here: cognition) are never explained by a single modifier gene

only, candidate alleles like the SK3 variants shown here co-

determine, together with other trait-relevant genes and environ-

mental factors, the outcome of an individual suffering from

schizophrenia.

In fact, we hypothesize that an interplay of multiple causative

factors, perhaps thousands of potential combinations of genes/

genetic markers and an array of different environmental

risks, leads to the development of a schizophrenic phenotype.

Not too much of an overlap may exist between genetic risk

factors from one schizophrenic patient to an unrelated other

schizophrenic individual, explaining why it is basically

impossible to find common risk genes of schizophrenia with

appreciable odds ratios. In the overwhelming majority of cases,

schizophrenia seems to be the result of a ‘combination of many

unfortunate genotypes’, and a short SK3 repeat variant may be

one of them.

Given the obvious influence of SK3 conductance on higher

cognition, this channel may be an interesting pharmacological

target for addressing cognitive function in disease conditions

associated with cognitive deficits.
MATERIALS AND METHODS

For a more comprehensive version of Materials and methods

see Supporting information.

Human study

Subjects

The present study has been based on the GRAS data collection of

n¼1074 patients (as of October 2009) diagnosed according to DSM-

IV-TR with schizophrenia (73.2%), schizoaffective disorder (14.8%) or

other psychotic disorders/yet to be conrmed (12.0%). Control subjects

were healthy blood donors (n¼1143). The GRAS data collection as well

as the healthy control population is described in greater detail

elsewhere (Begemann et al, 2010; Ribbe et al, 2010).

Genotyping

Standard methods were used for DNA extraction from whole blood

(Genomed GmbH, Löhne, Germany). The polymorphic CAG repeat in

exon1 of KCNN3 was amplied from genomic DNA by PCR. Primers were

chosen according to Austin et al (1999), resulting in a PCR fragment of

�121bp. The amplicons were separated using size electrophoresis on

the ABI 3730 XL DNA Analyser (Applied Biosystems, Foster City, USA).

Raw data were processed using the Gene Mapper Software 4.0 (Applied
EMBO Mol Med 3, 1–11 www.embomolmed.org
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The paper explained

PROBLEM:

Schizophrenia has a strong genetic component but it is unclear

how genetic variants contribute to the disease phenotype. A

polyglutamine repeat in a calcium-activated potassium channel,

SK3, which is important for synaptic plasticity, has been

discussed for some time as potential risk factor for schizophrenia.

However, up to now it has remained unclear which domains of

the phenotype might be affected and how a ‘risk role’ of SK3

might translate to the biological level.

RESULTS:

We report here that SK3 does not increase the general risk for

schizophrenia, but that it contributes in a significant way to the

cognitive abilities of schizophrenic patients. Specifically, longer

polyglutamine stretches are associated with better cognitive

performance. On the molecular level, longer stretches result in a

reduced conductance of the channel. On the other hand, mice

overexpressing this gene (as a model of humans with shorter

polyglutamine sequence) perform cognitively worse than their

wildtype littermates. The chain of interactions thus reads:

Shorter repeats or SK3 overexpression—enhanced channel

function—reduced cognitive performance.

IMPACT:

We conclude that regarding SK3 channel function and

cognition, ‘less is more’. Therefore, pharmacological reduction of

SK3 channel conductance might be an attractive novel strategy

to improve cognition in disease states.
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Biosystems). Successful genotyping was performed for 1060 patients

and 1135 controls (99%).

Mouse study

Behaviour

Male WTand SK3 T/Tmice (Bond et al, 2000) (littermates) were started

at the age of 4 months on a battery of behavioural tests, performed in

the following order: elevated plus maze, open eld, hole board, rota-rod,

pre-pulse inhibition, social interaction, sucrose preference, Morris

water maze and fear conditioning.

Immunohistochemistry

SK3 immunostaining was carried out on parafn sections using a rabbit

polyclonal anti-SK3 antibody (Alomone, Jerusalem, Israel; dilution

1:120 v/v) and peroxidase labelled polymer anti-rabbit antibody

(Envision HRP System/DAB for rabbit primary antibodies, DAKO,

Glostrup, Denmark). Immunocomplexes were visualized by diamino-

benzidine (DAB; Sigma–Aldrich, Taufkirchen, Germany). Brighteld

images were obtained with an Axiovert 200M microscope (Zeiss,

Oberkochen, Germany).

Western blot

Experiments were performed using a rabbit polyclonal anti-SK3

antibody (Alomone, 1:2500), and a mouse monoclonal anti-beta actin

antibody (Abcam, Cambridge, UK, 1:10000) for mouse tissues, or a

mouse monoclonal anti-a-tubulin antibody (Sigma–Aldrich, 1:20000)

for HEK293 cells, and appropriate horseradish-peroxidase-conjugated

secondary antibodies (sheep anti-mouse IgG 1:10000 and donkey anti-

rabbit IgG 1:10000, GE Healthcare, Munich, Germany, for mouse tissues

or anti-rabbit IgG 1:5000 and anti-mouse IgG 1:10000, Sigma–Aldrich,

for HEK293 cells). Immunoreactivity was visualized by chemolumines-

cence (ECL, Millipore, Billerica, USA) and quantied by the Quantity One

analysis software (Bio-Rad, Munich, Germany).
www.embomolmed.org EMBO Mol Med 3, 1–11
In vitro analysis

Cloning

The vector containing eGFP-labelled SK3 was kindly provided by

H.Wulff (UC Davis). The different lengths of CAG repeats (11, 18 and 24)

were amplied by PCR from respective human samples and cloned

into the original vector using EcoRI and SgrAI restriction sites.

The resulting constructs eGFPhSK3(CAG)11, eGFPhSK3(CAG)18,

eGFPhSK3(CAG)24 were veried by sequencing. For obtaining

constructs without eGFP, vectors were sequentially digested with AgeI

and BspEI.

Transfection

HEK293 cells were transfected using Lipofectamine 2000 (Invitrogen,

Karlsruhe, Germany) following the manufacturer’s guidelines. Stable

cell pools were obtained by selection with 300mg/ml G-418

(Invitrogen). Representative uorescence images of living cells were

taken under an epiuorescence microscope; nuclei were stained with

Hoechst33342 (Invitrogen).

Electrophysiology

All measurements were performed by a blinded investigator.

Macroscopic currents elicited by a 500ms voltage ramp from �80

to R80mV were recorded in the whole-cell conguration of the patch-

clamp technique (Hamill et al, 1981). The intracellular solution

contained (in mM) 160KCl, 0.5MgCl2, 10EGTA, 9.5CaCl2, (free Ca2R

1.03mM), 10 Hepes/KOH pH 7.35. The control external

recording solution contained (in mM) 160NaCl, 2.5KCl, 2CaCl2,

1MgCl2, 8glucose, 10HEPES/NaOH, pH 7.4. Apamin (100nM)-sensitive

currents were determined by off-line subtraction. To determine overall

conductance and voltage of half-maximal block, we used a linear

current/voltage function with a block at positive voltages. Goodness of t

was evaluated by Pearson’s x2, and condence intervals by Student’s t

distribution.
� 2011 EMBO Molecular Medicine 9
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Statistical analysis

Case-control study

The sum of repeat lengths of both alleles of all individuals was analysed.

To account for the degree of heterogeneity between the two alleles

(intraindividual heterogeneity), the difference between allelic repeat

lengths was also calculated. Maximized x2 values for distribution of

genotypes among schizophrenic and control samples were determined

by Monte Carlo tests (using 1000 simulations) with Clump software

(Sham & Curtis, 1995) (http://www.mds.qmw.ac.uk/statgen/dcurtis/

software. html).

PGAS

Analyses were based on allelic repeat lengths sum. Statistical analyses

were carried out with R (v2.10.0). Data on cognitive tests are presented

in a way that higher values always indicate better performance. Non-

native German speakers with language problems (n¼87) were

excluded. Metric phenotypes were standardized to zero mean and

variance one by Blom transformation (Blom, 1958) and analysed by

linear models. Multivariate analysis modelled a target phenotype

vector, accounting for individual correlation between vector entries.

Variables were adjusted for covariates sex and age, for covariate

antipsychotic medication dose (all cognitive phenotypes, PANSS

positive symptoms, PANSS negative symptoms) and for covariate

negative symptoms (all cognitive phenotypes). Multiple testing

adjusted signicant thresholds to the 5%-level were determined by

Bonferroni-adjustment or by permutation test (50000 permutations,

to account for correlations between cognitive phenotypes).

Animal study

Statistical signicance was evaluated using unpaired Student’s

t-test and two-way repeated measurement ANOVA including

Bonferroni testing where applicable. Signicance level was set to

p<0.05. Data are represented as mean� s.e.m. in gures and text. The

data were analysed using Prism4 (GraphPad Software, San Diego,

CA, USA).
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A. Methods 

1. Human study 
GRAS: The Göttingen Research Association for Schizophrenia (GRAS) data collection has 

been approved by the Ethics Committee of the Georg-August-University of Göttingen, 

Germany (master committee), and the local internal review boards of all participating centers, 

and complies with the Helsinki declaration. The GRAS project comprises at present 1074 

patients diagnosed with DSM-IV-TR schizophrenia (73.2%; all types, e.g. paranoid, 

disorganized, catatonic, and undifferentiated, proven or suspected), schizoaffective disorder 

(14.8%) and other psychotic disorders / yet to be confirmed (12.0%). Patients were included 

regardless of the stage of the disease (acute, chronic, residual, or remitted). All study 

participants and, if applicable, their legal representatives gave written informed consent (for 

more detailed information on the GRAS sample see (Begemann et al, 2010; Ribbe et al, 

2010)). 

Subjects: A total of n=1060 (>98.5%) successfully genotyped GRAS patients were included 

in the present genetic analysis. Mean age of the patients was (mean±s.d.) 39.67±12.76  (range 

18 to 83) years, with 33.3% (n=353) being female and 66.7% (n=707) male. Control subjects 

were voluntary blood donors, recruited by the Department of Transfusion Medicine at the 

Georg-August-University of Göttingen according to national guidelines for blood donation. 

As such, they widely fulfill health criteria, ensured by a broad pre-donation screening process 

including standardized questionnaires, interviews, hemoglobin, blood pressure, pulse, and 

body temperature determinations. Of the 1135 (>99%) successfully genotyped control 

subjects, 59.0% were male (n=670) and 41.0% female (n=465). The average age was 

34.57±12.27 years, with a range from 18 to 69 years. A large majority of the subjects was of 

European Caucasian ethnicity, with similar distributions for cases (Caucasian 95.1%; other 

ethnicities 1.6%; unknown 3.3%) and controls (Caucasian 97.8%; other ethnicities 2%; 

unknown 0.2%).  

Phenotyping: Comprehensive interviews and testing were carried out by one and the same 

traveling team of trained examiners (psychiatrists, psychologists) on site at 23 collaborating 

centers in Germany, using the comprehensive 'GRAS Manual'. Briefly, semi-structured 

interviews were conducted to explore biographic and family information, level of education, 

quality of life indicators, disease history or exposure to pre-/peri-/postnatal environmental 

risk factors. Likewise, the psychopathological profile, psychiatric comorbidities, and 

current/former treatments were assessed. Psychometric rating, neuropsychological tests and 

neurological examinations were performed as described in the respective manuals.  
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Variables used in the present phenotype analysis: 

Reasoning (LPS3): In the LPS3, 40 rows consisting of 8 symbols each are presented for 5 

minutes, and the subject has to identify the symbol that fits least in each row. The number of 

correctly identified symbols is counted. This task requires reasoning, identification 

(discrimination and selection) of rules, and resistance against interposed ideas (straight 

execution) (Horn, 1983).  

Executive function (TMT-B): In the trail making test B (TMT-B), subjects are asked to 

sequentially connect randomly distributed letters and numbers on a page while alternating 

between the two sets, e.g. 1A2B3C4D etc. This test is a measure for executive function, 

cognitive flexibility, and sequence alternation (Reitan, 1958; War-Department, 1944). 

Word recognition (VLMT): The verbal learning and memory test (VLMT) is a German 

adaptation of the auditory verbal learning test (AVLT) (Crawford et al, 1989; Rey, 1964). For 

the (corrected) word recognition performance measure we used, subjects are read a list of 

words and have to indicate those that had been on a list they learned 30 minutes before in the 

first part of the test. Distractor items are words from an interference list they had also learned, 

as well as words that are phonetically or semantically similar to the targets. The corrected 

recognition performance score is calculated by subtracting the number of wrong answers from 

the number of correct answers. This test requires verbal learning and memory, as well as a 

certain degree of cognitive control to discriminate and select between target and distractor 

items (Helmstaedter et al, 2001). 

Divided attention (TAP) and alertness (TAP): ‘Testbatterie zur Aufmerksamkeitsprüfung’ 

(TAP) is a computerized German test battery. The subtests divided attention (D3) and 

alertness (AL) were used. In the divided attention test, subjects are presented in parallel with a 

visual and an auditory task. They have to press a key as fast as possible whenever crosses 

presented on a screen build a square, and whenever two similar tones are presented in a row. 

The number of valid reactions was used in this study. The alertness test is a measure for 

simple reaction time. In this test, subjects have to react as fast as possible by pressing a key 

whenever a cross appears on the screen (Zimmermann & Fimm, 1993). 

Tapping and dotting: Tapping and dotting are 'pencil and paper' tests from the MacQuarrie 

test for mechanical ability, and measure fine motor function, speed, and coordination. In the 

tapping test, subjects are requested to put into a series of circles 3 pencil dots each as fast as 

they can. In the dotting test, they are asked to put 1 pencil dot into a series of small circles as 

accurately and as fast as they can. In both tests, the number of circles completed after 30 

seconds is counted (Chapman, 1948; MacQuarrie, 1925, 1953). 
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Premorbid Intelligence (MWT-B): In the multiple choice vocabulary test (MWT-B, Lehrl, 

1999), subjects are asked without time restrictions to identify 1 correct word in a total of 37 

lines, consisting of 5 words (1 real word and 4 pronounceable pseudo-words) each,. The 

MWT-B requires passive word recognition and represents a valid measurement for the 

premorbid intellectual level. It also correlates well with the global IQ (Lehrl et al, 1995). 

Positive and negative syndrome scale (PANSS) for schizophrenia: The PANSS is a rating 

scale developed to measure symptom severity of schizophrenic patients. It consists of a total 

of 30 items, divided into the positive symptom scale, negative symptom scale, and general 

psychopathology scale (Kay et al, 1987). The negative symptom scale of the PANSS was 

used as covariate to control for the influence of psychopathology on neuropsychological 

performance. It has been shown that negative symptoms correlate with cognitive performance 

in schizophrenia, while positive symptoms do not  (Dominguez Mde et al, 2009; 

Nieuwenstein et al, 2001). 

Antipsychotic medication dose: Information on regular current medication was obtained 

directly from chart records or files at the collaborating centers. Antipsychotic medication dose 

was expressed in chlorpromazine equivalents (Davis, 1976). Chlorpromazine equivalents 

relate the neuroleptic potency of a compound to that of chlorpromazine in order to obtain 

comparable units across different medications. Chlorpromazine equivalence factors were 

taken from the literature or directly obtained from pharmaceutical companies. 

 

Genotyping: 
DNA Extraction and Normalization: Genomic DNA was purified from whole blood using 

JETQUICK Blood & Cell Culture DNA Spin Kit (Genomed GmbH, Löhne, Germany) 

according to the manufacturer's protocol. Resulting DNA samples were aliquoted and stored 

at -80°C. For further analysis, DNA was normalized to 50ng/µl with an automated robotic 

platform (Microlab Star, Hamilton, Bonaduz, Switzerland). For quality control, each sample 

was analyzed with a 0.8% agarose gel. 

Analysis of CAG repeat: The polymorphic CAG repeat in exon1 of hKCNN3 was amplified 

from genomic DNA by PCR. Primers were chosen according to Austin and colleagues 

(Austin et al, 1999), resulting in a PCR fragment of ~121bp: forward 5´-FAM CAG CAG 

CCC CTG GGA CCC TCG C-3´ / reverse 5´-GGA GTT GGG CGA GCT GAG ACA G-3´. 

For each sample, the reaction mixture (20µL) was prepared in 384 well plates, each 

containing 50ng of human genomic DNA, NH4 Buffer (1x), 125µM dNTPs, 2.5mM MgCl2, 

200nM FAM-labeled forward and reverse primers, and 1U Diamond polymerase (Bioline, 
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Luckenwalde, Germany). The cycling program was carried out after a preheating step at 94°C 

for 5min and included 30 cycles of (1) denaturation at 94°C for 30s, (2) annealing at 65°C for 

30s and (3) extension at 72°C for 60s in a DNA Thermal Cycler (PTC-200 MJ Research, 

BioRad, Munich, Germany). The amplicons were separated using size electrophoresis on the 

ABI 3730 XL DNA Analyzer (Applied Biosystems, Foster City, USA). Samples were diluted 

1:50 with 0.3mM EDTA and 4µl were mixed with 6µl LIZ-500 Size Standard (Applied 

Biosystems). Raw data were processed using the Gene Mapper Software 4.0 (Applied 

Biosystems). 

 

2. Mouse study 
Animals: All experiments have been approved by the local Animal Care and Use Committee. 

The establishment of a transgenic mouse line with overexpression of the Kcnn3 gene (here 

called SK3 T/T) has been reported elsewhere (Bond et al, 2000). SK3 T/T mice have been 

backcrossed for more then 15 generations with C57BL/6J mice by a commercial breeder (The 

Jackson Laboratory, Bar Harbor, Maine 04609 USA). We obtained 3 heterozygous SK3 T/T 

founders as a gift from J.P. Adelman and C.T. Bond (Vollum Institute, OHSU, Portland, OR) 

and performed another 5 backcrosses with C57BL/6J mice before onset of extensive breeding 

for behavioral experiments. Taken into account that after 20 backcrosses, a SK3 T/T mouse 

has a widely homogeneous C57BL/6J genetic background, we bred mice for experiments by 

crossing heterozygous females with heterozygous, homozygous and wildtype males in order 

to obtain a large amount of SK3 T/T and WT males within a short time window. Mice were 

housed individually in standard plastic cages and maintained in a temperature-controlled 

environment (21±2°C) on a 12h light/dark cycle with food and water ad libitum. All 

experiments have been approved by the local Animal Care and Use Committee. 

Mouse behavioral testing:  

Male wildtype and SK3 T/T mice (littermates) were started at the age of 4 months on a battery 

of behavioral tests, performed in the following order: elevated plus maze, open field, hole 

board, rota-rod, pre-pulse inhibition, social interaction, sucrose preference, Morris water maze 

and fear conditioning.   

Elevated plus maze: The mouse was placed in the central platform, facing an open arm of the 

plus-maze. Behavior was recorded by an overhead video camera and a PC equipped with 

‘Viewer’ software (Biobserve, Bonn, Germany) to calculate the time each animal spends in 

open or closed arms. The proportion of time spent in open arms was used for estimation of 

open arm aversion (fear equivalent).  
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Open field: Spontaneous activity in the open field was tested in a grey Perspex arena (120cm 

in diameter, 25cm high) that was virtually divided into 3 zones: central, intermediate and 

peripheral. The mouse was placed in the center of the arena and the test started as soon as the 

mouse reached the wall. Over 7 minutes, the mouse was allowed to freely explore the open 

field. The behavior was recorded by a PC-linked overhead video camera. ‘Viewer’ software 

was used to calculate velocity, distance traveled and time spent in each of the zones. 

Additionally, the initial latency to reach the wall from the center was recorded.  

Hole board: The hole board test measures exploratory activity. The apparatus (TSE, Bad 

Homburg, Germany) consisted of a 50cm×50cm×35cm transparent perspex chamber with a 

non-transparent floor raised above the bottom of the chamber. The floor had 16 equally 

spaced holes, 2.4cm in diameter that were fitted with the light barrier sensor (8mm below the 

floor). Mice were allowed to explore the chamber for 5 min and the number of explored holes 

(head dips) was recorded by a PC equipped with the hole board software.  

Rota-rod: Rota-rod is a test for motor function, balance and coordination, and comprises a 

rotating drum (Ugo Basile, Comerio, Varese, Italy) which is accelerated from 4 to 40 

revolutions per minute over the course of 5min. Each mouse was placed individually on a 

drum and the latency of falling from the drum was recorded using a stop-watch. To assess 

motor learning, the rota-rod test was repeated 24h later.  

Pre-pulse inhibition: Pre-pulse inhibition of the startle response was measured in a 4-station 

testing system (TSE). An experimental session consisted of a 2min habituation to the 65dB 

background white noise (continuous throughout the session), followed by a baseline recording 

for 1min at background noise. After baseline recording, 6 pulse alone trials using the startle 

stimuli of 120dB intensity and 40ms duration were applied to decrease the influence of 

within-session habituation (data not included in analysis of PPI). For tests of PPI, the 

120dB/40ms startle pulse was applied either alone or preceded by a pre-pulse stimulus of 70, 

75 and 80dB intensity and 20ms duration. An interval of 100ms with background white noise 

was employed between each pre-pulse and pulse stimulus. All trials were presented in a 

pseudorandom order with an interval ranging from 8s to 22s. Amplitudes of the startle 

response were averaged for each individual animal, separately for both types of trials 

(stimulus alone, stimulus preceded by a pre-pulse). PPI was calculated as a percentage of the 

startle response using the formula: % pre-pulse inhibition = 100 – [(startle amplitude to pulse 

after pre-pulse)/(startle amplitude after pulse only) x 100]. 

Sociability and social memory test: Sociability and social memory test was performed in 

rectangular perspex box that was divided with 2 transparent walls, forming 3 chambers (each: 
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20cmx40cmx22cm). Dividing walls had rectangular openings (5cm wide) allowing access 

into each chamber. First, during the habituation phase, the openings were closed and the 

experimental mouse was placed in the middle chamber and allowed to explore it for 5min. 

After the habituation period, the sociability test was performed. For this purpose, an 

unfamiliar C57BL/6J male mouse (stranger 1) was placed in one of the side chambers. This 

mouse was enclosed in a small (7.5cmx11.5cmx7.5cm) wire cage, which allowed nose 

contact between two mice but prevented fighting. An identical empty wire cage was placed in 

the opposite chamber. Both openings to the side chambers were then opened and the 

experimental mouse was allowed to freely explore the entire box for 10 min. The time spent 

in each chamber and the number of entries into each chamber were recorded by the video-

tracking system 'Viewer'. Subsequently, the social memory test was performed. A second, 

unfamiliar mouse (stranger 2) was placed into the previously empty wire cage and the 

experimental mouse had again free access to all chambers for 10 min and could choose 

between the first, already explored mouse (stranger 1), and the novel unfamiliar mouse 

(stranger 2). All mice used as strangers had been previously habituated to the placement in the 

small wire cage and had no prior contact with the experimental mice. 

Sucrose preference test: Mice were first habituated to 1% sucrose solution which was given 

in their home cages for 48h. During the sucrose preference test, mice had free access for 24h 

to two bottles, one with tap water and one with sucrose solution. Consumption of water or 

sucrose solution was measured by weighing the bottles before and after the session. Sucrose 

preference was calculated as follows: Preference = [sucrose solution intake / total fluid 

intake]*100. 

Morris water maze: Spatial learning and memory was assessed in a water maze (Morris, 

1984). A large circular tank (diameter 1.2m, depth 0.4m) was filled with opaque water 

(25±1°C, depth 0.3m) and the escape platform (10cmx10cm) was submerged 1cm below the 

surface. The swim patterns were monitored by an overhead video camera and a PC equipped 

with ‘Viewer’ software. The escape latency, swim speed, path length, and trajectory of 

swimming were recorded for each mouse. During the first 2 days, mice were trained to swim 

to a clearly visible platform (visible platform task) that was marked with a 15cm high black 

flag and placed pseudorandomly in different locations across trials (non-spatial training). The 

extra-maze cues were hidden during these trials. After 2 days of visible platform training, 

hidden platform training (spatial training) was performed. For 8 days, mice were trained to 

find a hidden platform (i.e., the flag was removed) that was located in the center of 1 of the 4 

quadrants of the pool. The location of the platform was fixed throughout testing. Mice had to 
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navigate using extra-maze cues that were placed on the walls of the testing room. Every day, 

mice went through four trials with an inter-trial interval of 5min. The mice were placed into 

the pool facing the side wall randomly at one of four start locations and allowed to swim until 

they found the platform, or for a maximum of 90s. Any mouse that failed to find the platform 

within 90s was guided to the platform. The animal then remained on the platform for 20s 

before being removed from the pool. The day after completion of the hidden platform 

training, a probe trial was conducted to determine whether mice used a spatial strategy to find 

the platform. The platform was removed from the pool and the mice were allowed to swim 

freely for 90s. The percentage of time spent in each quadrant of the pool as well as the 

number of times the mice crossed the former position of the hidden platform were recorded. 

Fear conditioning: Mice were trained within the same session for both contextual and cued 

fear conditioning. After a 2min period, during which baseline freezing was assessed, mice 

received 2 paired presentations of a 10s, 5kHz, 85dB tone (conditioned stimulus, CS) and a 

2s, 0.4mA foot shock (unconditioned stimulus, US). The contextual memory was assessed 

72h after the training. Mice were monitored over 2min for freezing in the same conditioning 

chamber. The cued memory test was performed 4h later. For this purpose, mice were placed 

in a new chamber with novel visual cues and baseline freezing (pre-cue) was measured for 

2min. Thereafter, a 85dB tone (conditioned stimulus, CS) was presented for 2min and 

freezing upon tone was quantified. Duration of freezing behavior, defined as the absolute lack 

of movement (excluding respiratory movements), was recorded by a video camera and a PC 

equipped with ‘Video Freeze’ software (MED Associates, St. Albans, Vermont, USA). 

 

Immunohistochemistry:  

Mice were killed by CO2 inhalation and decapitated. Brains were removed and fixed for 3 

days in 4% w/v paraformaldehyde in phosphate-buffered saline (PBS), pH 7.4 at 4°C, 

followed by paraffin embedding. Brains were serially cut in the sagittal plane at 7µm 

thickness with a microtome (Model RM2255, Leica, Wetzlar, Germany) and collected on 

positively charged slides. The plane of sectioning was oriented to match the drawings of the 

mouse brain atlas (Paxinos & Franklin, 2001). Following deparaffinizing, tissue sections were 

washed with Tris-buffered saline (TBS) for 5 min and incubated with peroxidase block for 

15min at room temperature. After washing with TBS 3 times, the non-specific binding sites 

were blocked using 10% BSA in TBS for 30min at room temperature. Slides were then 

incubated for 3h at room temperature with rabbit polyclonal anti-SK3 antibody (Alomone, 

Jersualem, Israel; dilution 1:120 v/v), followed by 3 washes for 3min each with TBS and 
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incubation with peroxidase labeled polymer anti-rabbit antibody (Envision HRP System/DAB 

for rabbit primary antibodies, DAKO, Glostrup, Denmark) for 30min at room temperature. 

SK3 staining was visualized with peroxidase and 3,3`-diaminobenzidine chromogen solution. 

Sections were dehydrated and mounted with xylene-based balsam (Permount, Fisher 

Scientific, Waltham, USA). The following negative controls were performed: (a) replacement 

of primary antibody by normal rabbit serum; (b) pre-adsorption of the antibody to the 

corresponding fusion protein (1µg peptide per 1µg antibody). Brightfield images were 

obtained with an Axiovert 200M microscope (Zeiss, Oberkochen, Germany) equipped with a 

digital camera (AxioCamHR, Zeiss).  

Western blot:  

Tissues samples were homogenized in lysis buffer (75mM NaCl, 25mM TrisHCl pH 7.5, 

0.5% Triton X-100, 2.5mM EDTA pH 8.0) with complete protease inhibitor cocktail (Roche 

Diagnostics, Basel, Switzerland), lysed on ice for 20min, and centrifuged at 4°C for 30min at 

13000rpm. The supernatant was then stored at -80°C. Protein concentrations were measured 

using a Bradford based detergent-compatible colorimetric assay (BioRad). Laemmli sample 

buffer (Laemmli, 1970) was added to the samples, samples were boiled, and 50µg of total 

protein per lane was loaded onto SDS-PAGE gels. Proteins were separated by SDS-PAGE on 

an 8% polyacrylamide gel before electroblotting onto PVDF Membrane (Bio-Rad) at pH 10. 

The membrane was blocked with 5% nonfat milk in TBS 0.1% Tween-20 (TBST) for 4h at 

4°C before incubation with rabbit polyclonal anti-SK3 antibody (Alomone, 1:2500) in 

blocking buffer overnight at 4°C and before incubation with the mouse monoclonal anti-beta 

actin antibody (Abcam, Cambridge, UK, 1:10000) in blocking buffer for 1h at RT. The 

membrane was washed 3 times in TBST for 10min, and incubated with the appropriate 

horseradish-peroxidase-conjugated secondary antibody (sheep anti-mouse IgG: 1:10000 

dilution and donkey anti-rabbit IgG: 1:10000 dilution, GE Healthcare, Munich, Germany) in 

blocking buffer for 1h at room temperature. The membrane was washed 2 times in TBST and 

once in TBS for 10min. Immunoreactivity was visualized by chemoluminescence (ECL, 

Millipore, Billerica, USA) and quantified by the Quantity One analysis software (Bio-Rad). 
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3. In vitro analysis 
Cloning procedure: The cDNA vector encoding eGFP-labeled SK3 was kindly provided by 

H.Wulff, UC Davis, CA. The different length of CAG repeats (11, 18 and 24) were PCR 

amplified from respective human samples. The following primers were used: hSK3_CAG 

forward: 5'- CTTCGAATTCCATGGACACTTCTGGGCACTTC -3'; hSK3_CAG reverse: 5'- 

TGTCCCGCCGGTGCACCAGG -3'. The cloning into the vector was performed using EcoRI 

and SgrAI restriction sites. The resulting constructs eGFPhSK3(CAG)11, eGFPhSK3(CAG)18, 

eGFPhSK3(CAG)24  were verified by sequencing. To analyze a potential influence of the 

eGFP tag on channel function, we also constructed vectors without tag. Therefore, the eGFP 

sequence was sequentially cut out with AgeI and BspEI, resulting in the constructs 

hSK3(CAG)11, hSK3(CAG)18, hSK3(CAG)24. 

Transfection: For electrophysiological experiments, cells were transfected using 

Lipofectamine 2000 (Invitrogen, Karlsruhe, Germany) following the manufacturer’s 

guidelines. Stable cell pools were obtained by selection with 300µg/mL G-418 (Invitrogen). 

There was no detectable difference in terms of electrophysiological characteristics between 

transiently (detected through eGFP fluorescence) and stably transfected cells. Transfected 

cells were grown for 24-72h on fibronectin-coated glass cover slips. Representative 

fluorescence images of living cells were taken under an epifluorescence microscope; nuclei 

were stained with Hoechst33342 (Invitrogen). hSK3(CAG)11, hSK3(CAG)18, and 

hSK3(CAG)24 were measured in transiently transfected cells only. 

Electrophysiology: All measurements were conducted by a blinded investigator. 

Electrophysiological experiments were performed at room temperature. Macroscopic currents 

were recorded in the whole-cell configuration of the patch-clamp technique (Hamill et al, 

1981) using an EPC-9 amplifier (HEKA, Lambrecht, Germany). Patch pipettes with a tip 

resistance of 1.5-2MΩ were made from Corning #0010 capillary glass (WPI, Berlin, 

Germany). Series resistance was compensated by 60-80%. Both series resistance and total cell 

capacity were determined by automatic cancellation of capacity transients. The internal 

solution contained (in mM) 160KCl, 0.5MgCl2, 10EGTA, 9.5CaCl2, (free Ca2+ 1.03µM), 

10Hepes/KOH pH 7.35. The control external recording solution contained (in mM) 160NaCl, 

2.5KCl, 2CaCl2, 1MgCl2, 8glucose, 10HEPES/NaOH, pH 7.4. Apamin (100nM, Alomone) 

was added to the control external solution from a 50µM stock, and cells were superfused with 

the apamin-containing solution using a focal perfusion system (ALA scientific instruments, 

Farmingdale, NY). Currents elicited by a 500ms voltage ramp from -80 to +80mV were 

digitized at 4kHz. Apamin-sensitive currents were determined by off-line subtraction of traces 
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obtained in the presence of apamin from control traces, using FitMaster (HEKA) and IgorPro 

(WaveMetrics, Lake Oswego, OR). Data shown in text and legends represent mean±s.e.m. for 

the indicated number of experiments. To fit the data, we used a linear current/voltage function 

with a positive block with the form: 

 

 

 

where G is the overall conductance, VE is the equilibrium potential (-107mV under our 

experimental conditions for a K+-selective channel), Vb is the voltage at which half-maximal 

block occurs and k is the slope of the blocking function. 

Western blot confirmation of glutamine repeat lengths: Experiments were performed 

using rabbit polyclonal anti-SK3 (Alomone, 1:2500) and mouse monoclonal anti-α-tubulin 

antibodies (SIGMA-Aldrich, Taufkirchen, Germany, 1:20000) and appropriate horseradish-

peroxidase-conjugated secondary antibodies (anti-rabbit IgG: 1:5000 and anti-mouse IgG: 

1:10000, SIGMA-Aldrich). Immunoreactivity was visualized by chemoluminescence (ECL, 

Millipore). 

 

4. Statistical analyses 
Case-control study: The sum of allelic repeat lengths of all individuals was analyzed. To 

account for the degree of heterogeneity between the 2 alleles, the difference between the 

allelic repeat lengths was also calculated. p values for the distribution of genotypes among 

schizophrenic and control samples were determined by Monte Carlo tests with Clump 

software (Sham & Curtis, 1995). (HHUUhttp://www.mds.qmw.ac.uk/statgen/dcurtis/software.html UUHH).  

This program derives a χ2 value from a 2xm table by 'clumping' columns together into a new 

2x2 table in a way designed to maximize the χ2 value. The unbiased significance is assessed 

by a Monte Carlo approach generating 2xm tables with the same row and column totals as the 

original table, clumping them into 2x2 tables to produce maximal χ2 values, and counting the 

number of times the χ2 value of the clumped real table is achieved or exceeded by the 

randomly simulated data. 

PGAS: Statistical analyses were performed using R2.10.0 (HHUUhttp://cran.r-project.orgUUHH).  All 

cognitive phenotypes were represented such that larger values correspond to better 

performance: For this purpose, a sign change was applied to all excecution times. After 

selection of the relevant subsample (see below), metric target and control phenotypic 

variables were standardized by Blom transformation (Blom, 1958) prior to statistical analysis. 

f (V ) =G V −VE( ) 1

1+ e
−(V −Vb )

k
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The Blom transformation is a probit transformation of the ranks ri obtained on all n available 

(non-missing) values of a specific phenotype, ( ))4/1/()8/3(1 +−Φ= − nry ii  where 1−Φ is the 

quantile function of the standard normal distribution. The resulting standardized phenotypes 

are normally distributed with zero mean and variance one. They were analyzed by linear 

models, adjusting for covariates sex and age, additionally for medication (all cognitive 

phenotypes, PANSS-positive and negative control variables) and for negative symptoms (all 

cognitive phenotypes). The influence of allelic repeat length sum was studied by a regression 

model (main table 1) and by a classification model (Table S2). The regression model 

estimates the change of the covariate-adjusted mean phenotype value per additional repeat in 

the sum of repeat lengths of the two alleles. We excluded rare extreme observations of allelic 

repeat length sum from the regression analysis and non-native German speakers with 

language problems. 

The classification model estimates and tests the difference in the covariate-adjusted phenotype 

means between groups with low (below-median) and high (above-median) allelic repeat 

length sum. The sample median of allelic repeat length sum was 35. Individuals with this 

value were excluded from the classification analysis as well as non-native German speakers 

with language problems. Multiple testing adjusted significant thresholds were determined by 

Bonferroni-adjustment or by permutation test (to account for correlations between cognitive 

phenotypes). The permutation test simulated the distribution of wrong test decisions under the 

null-hypothesis of no genotype-phenotype association by generating replications of the 

original sample, each with permuted assignment of the individual genotype. This conserves 

the underlying correlations between cognitive traits and the underlying correlations between 

traits and covariates. The multiple-testing adjusted significance threshold was determined 

such that the probability of at least one wrong test decision was ≤5% for the considered set of 

tests on n=50 000 replications of the original sample with permuted genotype-phenotype 

assignment.  
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 B. Supplementary Figures 

 

 
 
 
Figure S1: Additional behavioral results in SK3 T/T versus WT mice 
(A-D) The 2 genotypes did not differ in sucrose preference (A), sociability (B), social memory (C), 
and pre-pulse inhibition of the startle response at 3 different pre-pulse intensities (D).                         
(E) The probe trial of the Morris water maze test revealed genotype differences (2-way repeated 
measures ANOVA, quadrant x genotype interaction: F3,78=2.70, p=0.05). T/T mice spent less time 
exploring the target quadrant (*Student's t-test, t1,26=2.25, p=0.033). For all experiments: n=13-15; 
data presented as mean±s.e.m.; * indicates p<0.05. 
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Figure S2: KCNN3 CAG repeat length affects electrophysiological properties of SK3 also in the 
absence of the eGFP tag 
(A) The eGFP in all constructs was removed, resulting in hSK3(CAG)n. Indicated are size, locations of 
the CAG repeat (labeled in orange) and of the primers (labeled in purple). (B) Average apamin-
sensitive current amplitude (normalized versus the corresponding current maximum) for clones 
hSK3(CAG)11 (green), hSK3(CAG)18 (blue) and hSK3(CAG)24 (red). The black line represents the fit to 
an I/V function with voltage dependent block. Voltage for half-maximal block was 86.1 ± 0.08mV, 
44.4 ± 0.02mV (n=7) and 25.9 ± 0.07mV (n=7) for hSK3(CAG)11, hSK3(CAG)18 and hSK3(CAG)24, 
respectively. 
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C. Supplementary Tables 
 
Table S1:  
Allelic repeat lengths differences and sums - Observed combinations and their counts 
 

 Difference 

Sum 0 1 2 3 4 5 6 7 8 9

24 5  1        

25  2         

26 1  1    2    

27    3    2   

28 1  3  9    3  

29    4  23    1

30 4  5  14  15    

31  8  6  18  9   

32 13  23  7  7  6  

33  57  22  2  3   

34 52  82  9  2    

35  151  20  6     

36 121  49  18      

37  66  20  1     

38 12  40  4  2    

39  13  7  1     

40 4  5  4      

41  1    2     

42   1        

 
Shown are the counts of all observed individual combinations for the difference and sum of allelic 
repeat lengths of the 2 alleles in schizophrenic patients without language problems (n=973). Empty 
cells are given in case of no observations. Regression analysis was applied to the shaded region of sum 
values (ranging from 28 to 40), omitting rare observations with extreme sum values. The reason for 
this exclusion is that the power of the regression analysis is optimal when the analysis is focused on 
the range of sum values where the transition between good and poor functioning of the SK3 channel 
occurs. Extreme sum values were rare and not expected to be part of this transition region. For 
classification analysis, the median sum value of 35 (darker shade) was omitted, contrasting the 2 
groups with low (below-median) versus high (above-median) sum values and including rare extremes. 
The reason behind the exclusion of the median sum value is that the power of the classification 
analysis is optimal when only groups with good and poor channel function are compared, omitting 
sum values of the transition region.  
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Table S2: 
Classification model: Association of low versus high SK3 allelic repeat lengths sum with target 
and control phenotypes 
 

 

a,b Multiple testing corrected significance thresholds: afirst level of tests p≤0.0100 (Bonferroni), bsecond level of tests p≤0.0141 
(permutation test with 50 000 permutations to account for correlations between phenotypes). 
 
 
Association analyses of low (below-median; <35) versus high (above-median; >35) allelic repeat 
lengths sum with mean value of target and control phenotypes. Omitted were individuals with sample 
median repeat lengths sum 35 (n=177) and non-native German speakers with language problems 
(n=87), to give a total of n=796 to be analyzed.  Phenotypes were adjusted for sex and age, for 
medication (all cognitive phenotypes, PANSS-positive, PANSS-negative) and for negative symptoms 
(all cognitive phenotypes). All phenotypes were standardized to zero mean and variance one: larger 
values for cognitive phenotypes correspond to better performance. Like Cohen’s d, the genetically 
induced effect size (class mean difference) is quantified relative to the standard deviation of the trait. 
 
 
 
 
 
 

Difference in class means                Statistical test 
Phenotypes 

estimate 95% confidence interval t-value (1df)  p  value 

Cognitive target variables:       

Combined (multivariate) 0.1544 0.0654, 0.2434 3.4004  0.0007a 

Individual (univariate)      

   Reasoning 0.1500 0.0322, 0.2679 2.4989  0.0127b 

   Executive function 0.1647 0.0455, 0.2838 2.7141  0.0068b 

   Word recognition 0.1449 0.0185, 0.2713 2.2508  0.0247b 

   Divided attention 0.2015 0.0647, 0.3382 2.8918  0.0040b 

Cognitive control variables:       

Combined (multivariate) 0.0527 -0.0410, 0.1465 1.1025  0.2703a 

Individual (univariate)      

   Dotting 0.0527 -0.0676, 0.1731 0.8605  0.3898 

   Tapping 0.0609 -0.0594, 0.1812 0.9944  0.3203 

   Alertness 0.0564 -0.0641, 0.1769 0.9187  0.3586 

Premorbid Intelligence 0.0550 -0.0763, 0.1864 0.8224  0.4111a 

Disease-related control variables:      

   PANSS positive symptoms 0.0357 -0.0934, 0.1648 0.5429  0.5874a 

   PANSS negative symptoms  0.0226 -0.1144, 0.1596 0.3236  0.7463a 

Disease-unrelated control variable:      

   Body length 0.0755 -0.0297, 0.1806 1.4088  0.1593a 



  

 

Table S3a:  
Raw data of cognitive target and control variables in low* (n=425) and high* (n=371) allelic repeat lengths sum carriers as well as in the total GRAS 
sample (n=1060) and in healthy controls (normative samples) 
 
 
 
  Low allelic repeat lengths sum*  High allelic repeat lengths sum*  

 
 
 total  GRAS sample  

 
normative data (PR)1 or mean values of healthy 

controls 

 mean ± sd  range  mean ± sd  range   mean ± sd  range  n  
 

PR1 
(Percentile Rank)  mean ± sd 

Cognitive target variables (individual)                  

Reasoning (LPS)  20.04 ± 6.76  2-37  20.76 ± 6.56  5-38   20.35 ± 6.75  2-38  1556a  31  - 

Executive function (TMT-B)°  139.02 ± 116.05  27-1118  133.86 ± 108.70  32-836   136.96 ± 112.49  27-1118  24b  <10  71.50 ± 31.07 

Word recognition (VLMT)  9.79 ± 5.60  -16-15  10.20 ± 5.52  -23-15   9.93 ± 5.54  -23-15  515c  10   

Divided attention (TAP)  25.37 ± 5.13  7-33  26.21 ± 5.17  6-33   25.69 ± 5.20  6-33  -  -  - 

Cognitive control variables (individual)                  

Dotting   45.71 ± 13.55  13-100  45.80 ± 13.60  8-85   45.59 ± 13.70  8-100  103d  -  63.24 ± 11.03 

Tapping  28.45 ± 8.41   8-65  28.70 ± 8.82  4-59   28.36 ± 8.67  4-65  103d  -  37.63  ± 7.04 

Alertness (TAP), reaction time° 333.61 ± 135.74  178.00-1257.00  332.77 ± 147.43  166.50-1355.00   337.62 ± 146.05  166.50-1355.00  120e  3  - 

Premorbid IQ (MWT-B) 25.70 ± 6.37  4-37  25.90 ± 6.19  5-37   25.79 ± 6.35  4-37  1952f  39.2  - 
 
* Non-native German speakers with language problems (n=87) were excluded. Low (below-median; <35) and high (above median; >35) allelic repeat lengths sum carriers presented; individuals with an allelic repeat lengths sum of 35 (n=177) were excluded. 
° Higher scores reflect better performance, except for TMT-B and Alertness  
1 Percentile ranks (PR) <15 indicate that the mean or the median of the total sample is below average in comparison to a normative sample 
 
aHorn W: Leistungsprüfsystem (LPS). 2 edition. Goettingen: Hogrefe; 1983. bPerianez JA, Rios-Lago M, Rodriguez-Sanchez JM, Adrover-Roig D, Sanchez-Cubillo I, Crespo-Facorro B, Quemada JI, Barcelo F: Trail Making Test in traumatic brain injury, schizophrenia, 
and normal ageing: sample comparisons and normative data. Arch Clin Neuropsychol 2007, 22(4):433-447. cHelmstaedter C, Lendt M, Lux S: Verbaler Lern- und Merkfähigkeitstest (VLMT). Goettingen: Beltz; 2001. dHealthy controls recruited for selected cognitive and 
olfactory testing (unpublished data). eZimmermann P, Fimm B: Testbatterie zur Aufmerksamkeitsprüfung (TAP). Version 1.02c. Herzogenrath: PSYTEST; 1993. fLehrl S: Mehrfach-Wortschatz-Intelligenztest MWT-B. Balingen: Spitta Verlag; 1999.  
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Table S3b:  
Raw data of cognitive target and control variables in carriers of different allelic repeat lengths sums. Non-native German speakers with language 
problems (n=87) were excluded. 
 
 

    
Allelic repeat lengths sum  28+29+30  31  32  33  34  35  36  37  38+39+40 

n (range)  82  41  56  84  145  177  188  87  92 

Cognitive target variables (individual)                 

Reasoning (LPS)  20.16 ± 6.07  20.76 ± 6.48  18.69 ± 6.76  19.69 ± 6.90  20.17 ± 7.24  20.24 ± 7.10  20.98 ± 6.39  20.60 ± 6.43  20.37 ± 7.11 

Executive function (TMT-B)°  159.98 ± 142.94  146.68 ± 115.65 130.76 ± 100.67 134.90 ± 85.67 132.36 ± 120.30 138.73 ± 112.44 133.53 ± 115.13 124.99 ± 90.83  142.83 ± 111.73 

Word recognition (VLMT)  9.24 ± 5.65  9.24 ± 6.56  10.22 ± 5.85  8.89 ± 6.03  10.37 ± 4.89  9.70 ± 5.44  9.94 ± 6.14  10.14 ± 4.90  10.74 ± 4.69 

Divided attention (TAP)  24.77 ± 5.65  25.29 ± 4.59  26.22 ± 4.43  25.25 ± 5.47  25.38 ± 5.10  25.38 ± 5.38  26.44 ± 5.10  26.33 ± 4.92  25.71 ± 5.37 

Cognitive control variables (individual)                 

Dotting   44.40 ± 12.85  44.83 ± 12.23  47.34 ± 14.53  46.91 ± 14.00  44.93 ± 13.37  44.86 ± 14.28  46.38 ± 13.09  45.23 ± 12.63  45.45 ± 15.41 

Tapping  28.37 ± 8.50  28.98 ± 8.58  28.87 ± 8.74  28.13 ± 8.24  28.14 ± 8.32  27.44 ± 8.94  28.79 ± 8.76  28.71 ± 7.70  28.90 ± 10.24 

Alertness (TAP), reaction time°  358.87 ± 179.15  309.65 ± 109.98   316.06 ± 101.69  337.25 ± 133.57  331.03 ± 127.06   357.81 ± 165.44  330.35 ± 149.30  337.29 ± 155.97  335.88 ± 138.40  

Premorbid IQ (MWT-B)  25.50 ± 6.61  24.68 ± 6.08  25.23 ± 5.88  25.61 ± 6.85  26.28 ± 6.01  25.78 ± 6.66  26.62 ± 5.86  25.64 ± 6.07  24.52 ± 6.88 

 
° Higher scores reflect better performance, except for TMT-B and Alertness  
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4. SUMMARY AND CONCLUSIONS 
 

 

Genetic association, linkage and family studies in the past decades show that there is a strong 

genetic component to schizophrenia. However, even the recent GWAS and CNV studies, 

analyzing huge patient cohorts, have not been able to detect a disease gene confirming that 

schizophrenia is polygenic and that each patient/family probably does have a different "risk" 

constellation of genotypes leading to the same diagnosis. The translation of genetic findings 

to biological mechanisms is still in its infancy. 

With our GRAS cohort, we have the unique opportunity to analyze how common variations in 

genes of interest, e.g. suggested by the GWAS, contribute to the phenotype. With the first two 

studies of this kind we were able to prove that our database is a valuable tool and that the 

sample size is adequate for this kind of analysis. 

 

Analyzing SK3 and CPLX2 showed that common variations (microsatellites and single 

nucleotide polymorphisms) contribute to specific cognitive domains in our schizophrenia 

sample. Interestingly, we could show for both genes that there are similar effects in mice and 

that an altered biological function is -at least in part- responsible for our findings. The CAG 

repeat in SK3 undoubtedly influences the electrophysiological properties of the resulting 

channel and the variant in the 3'UTR of complexin seems to be important for an exact control 

of CPLX2 expression in situations where it is needed. 

 

We believe that this kind of research is essential to shed more light on the biological grounds 

of schizophrenia. It will enable us to get a better understanding of what is happening in the 

brain and ultimately lead to novel treatment approaches. 
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Abstract

Background: Schizophrenia is the collective term for an exclusively clinically diagnosed, heterogeneous group of
mental disorders with still obscure biological roots. Based on the assumption that valuable information about
relevant genetic and environmental disease mechanisms can be obtained by association studies on patient cohorts
of ≥1000 patients, if performed on detailed clinical datasets and quantifiable biological readouts, we generated a
new schizophrenia data base, the GRAS (Göttingen Research Association for Schizophrenia) data collection. GRAS is
the necessary ground to study genetic causes of the schizophrenic phenotype in a ‘phenotype-based genetic
association study’ (PGAS). This approach is different from and complementary to the genome-wide association
studies (GWAS) on schizophrenia.

Methods: For this purpose, 1085 patients were recruited between 2005 and 2010 by an invariable team of
traveling investigators in a cross-sectional field study that comprised 23 German psychiatric hospitals. Additionally,
chart records and discharge letters of all patients were collected.

Results: The corresponding dataset extracted and presented in form of an overview here, comprises biographic
information, disease history, medication including side effects, and results of comprehensive cross-sectional
psychopathological, neuropsychological, and neurological examinations. With >3000 data points per schizophrenic
subject, this data base of living patients, who are also accessible for follow-up studies, provides a wide-ranging and
standardized phenotype characterization of as yet unprecedented detail.

Conclusions: The GRAS data base will serve as prerequisite for PGAS, a novel approach to better understanding
‘the schizophrenias’ through exploring the contribution of genetic variation to the schizophrenic phenotypes.

Background
Schizophrenia is a devastating brain disease that affects
approximately 1% of the population across cultures [1].
The diagnosis of schizophrenia or - perhaps more correctly
- of ‘the schizophrenias’ is still purely clinical, requiring the

coincident presence of symptoms as listed in the leading
classification systems, DSM-IV and ICD-10 [2,3].
Notably, one of the core symptoms of schizophrenia,

namely cognitive deficits, from mild impairments to
full-blown dementia, has not yet been considered in
these classifications. Biologically, schizophrenia is a
‘mixed bag’ of diseases that undoubtedly have a strong
genetic root. Family studies exploring relative risk of
schizophrenia have led to estimates of heritability of
about 64-88% [4,5]. Monozygotic twin studies showing

* Correspondence: ehrenreich@em.mpg.de
† Contributed equally
1Division of Clinical Neuroscience, Max Planck Institute of Experimental
Medicine, Göttingen, Germany
Full list of author information is available at the end of the article

Ribbe et al. BMC Psychiatry 2010, 10:91
http://www.biomedcentral.com/1471-244X/10/91

© 2010 Ribbe et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:ehrenreich@em.mpg.de


concordance rates of 41-65% [6,7] indicate a considerable
amount of non-genetic causes, in the following referred
to as ‘environmental factors’. Already in the middle of
the twentieth century, schizophrenia was seen as a ‘poly-
genetic’ disease [8] and, indeed, in numerous genetic stu-
dies since, ranging from segregation or linkage analyses,
genome scans and large association studies, no major
‘schizophrenia gene’ has been identified [9]. Even recent
genome-wide association studies (GWAS) on schizophre-
nia confirm that several distinct loci are associated with
the disease. These studies concentrated on endpoint
diagnosis and found odds ratios for single markers in dif-
ferent genomic regions ranging from 0.68 to 6.01 [10],
essentially underlining the fact that - across ethnicities -
in most cases these genotypes do not contribute more to
the disease than a slightly increased probability.
We hypothesize that an interplay of multiple causative

factors, perhaps thousands of potential combinations of
genes/genetic markers and an array of different environ-
mental risks, leads to the development of ‘the schizo-
phrenias’, as schematically illustrated in Figure 1. There

may be cases with a critical genetic load already present
without need of additional external co-factors, however,
in most individuals, an interaction of a certain genetic
predisposition with environmental co-factors is appar-
ently required for disease onset. In fact, not too much
of an overlap may exist between genetic risk factors
from one schizophrenic patient to an unrelated other
schizophrenic individual, explaining why it is basically
impossible to find common risk genes of schizophrenia
with appreciable odds ratios. One GRAS working
hypothesis is that in the overwhelming majority of cases,
schizophrenia is the result of a ‘combination of unfortu-
nate genotypes’.
If along the lines of traditional human genetics all

attempts to define schizophrenia as a ‘classical’ genetic
disease have largely failed, how can we learn more about
the contribution of genes/genotypes to the disease phe-
notype? Rather than searching by GWAS for yet other
schizophrenia risk genes, we designed an alternative and
widely complementary approach, termed PGAS (pheno-
type-based genetic association study), in order to

Complex multigenetic diseases
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Multiple genetic factors
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Figure 1 Schizophrenia is a complex multigenetic disease. Schizophrenia may be seen as the result of a multifaceted interplay between
multiple causative factors, including several genetic markers and a variety of different environmental risks. Cases with a critical genetic load may
not need additional external/environmental co-factors, whilst in others, the interaction of a certain genetic predisposition with environmental co-
factors is required for disease onset (modified from [84]).
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explore the contribution of certain genes/genetic mar-
kers to the schizophrenic phenotype. To launch PGAS,
we had to establish a comprehensive phenotypical data
base of schizophrenic patients, the GRAS (Göttingen
Research Association for Schizophrenia) data collection.
Very recently, we have been able to demonstrate proof-
of-concept for the PGAS approach [[11], and Grube
et al: Calcium-activated potassium channels as regulators
of cognitive performance in schizophrenia, submitted].
Large data bases of schizophrenic patients have been

instigated for decades to perform linkage/family studies,
treatment trials, genetic or epidemiological studies
applying either a cross-sectional or a longitudinal design
(e.g. [12-20]). However, for the above introduced PGAS
approach, another type of data base is required, and
only few of the existing data banks are suited for pheno-
typical analyses. An example is the ‘Clinical Antipsycho-
tic Trial of Intervention Effectiveness (CATIE)’,
originally set up as a treatment study comparing a first
generation antipsychotic drug with several second gen-
eration antipsychotics in a multisite randomized double-
blind trial [17,21]. The huge amount of data accumu-
lated in the frame of this trial serves now also for
GWAS and genotype-phenotype association studies
[22-25]. Disadvantages may be that the CATIE data
were collected by different examiners in 57 US sites and
that comprehensive data for phenotypical analyses are
only available for subsamples of the originally included
1493 patients. Another example of a large data base
with considerable phenotypical power is the ‘Australian
Schizophrenia Research Bank (ASRB)’ [26]. ASRB oper-
ates to collect, store and distribute linked clinical, cogni-
tive, neuroimaging and genetic data from a large sample
of patients with schizophrenia (at present nearly 500)
and healthy controls (almost 300) [27,28]).
The present paper has been designed (1) to introduce

the GRAS data collection, set up as prerequisite and
platform for PGAS; (2) to exemplify on some selected
areas of interest the potential of phenotypical readouts
derived from the GRAS data collection and their inter-
nal consistency; (3) to provide a first panel of epidemio-
logical data as a ‘side harvest’ of this data base; and (4)
to enable interested researchers worldwide to initiate
scientific collaborations based on this data base.

Methods
Ethics
The GRAS data collection has been approved by the ethical
committee of the Georg-August-University of Göttingen
(master committee) as well as by the respective local regu-
latories/ethical committees of all collaborating centers
(Table 1). The distribution of the centers over Germany
together with information on the numbers of recruited
patients per center is presented in Figure 2.

GRAS patients
From September 2005 to July 2008, a total of 1071
patients were examined by the GRAS team of traveling
investigators after giving written informed consent, own
and/or authorized legal representatives. Since then, low-
rate steady state recruitment has been ongoing, among
others to build up a new cohort for replicate analyses of
genotype-phenotype associations. As of July 2010, 1085
patients have been entered into the data base. They
were examined in different settings: 348 (32.1%) as out-
patients, 474 (43.7%) as inpatients in psychiatric hospi-
tals, 189 (17.4%) as residents in sheltered homes, 54
(5%) as patients in specific forensic units, and 20 (1.8%)
as day clinic patients. Inclusion criteria were (1) con-
firmed or suspected diagnosis of schizophrenia or schi-
zoaffective disorder according to DSM-IV and (2) at
least some ability to cooperate. Recruitment efficiency
over the core travel/field study time from 2005 to 2008
and patient flow are shown in Figures 3a and 3b. Of the
1085 patients entered into the data base, a total of 1037
fulfilled the diagnosis of schizophrenia or schizoaffective
disorder. For 48 patients the diagnosis of schizophrenia
could not be ultimately confirmed upon careful re-check
and follow-up. Of the schizophrenic patients, 96% com-
pleted the GRAS assessment whereas about 4% dropped
out during the examination. Almost all patients agreed
to be re-contacted for potential follow-up studies, only
1.5% were either lost to follow-up (present address
unknown or deceased) or did not give consent to be
contacted again.

Healthy control subjects
(1) For genetic analyses, control subjects, who gave writ-
ten informed consent, were voluntary blood donors,
recruited by the Department of Transfusion Medicine at
the Georg-August-University of Göttingen according to
national guidelines for blood donation. As such, they
widely fulfill health criteria, ensured by a broad pre-
donation screening process containing standardized
questionnaires, interviews, hemoglobin, blood pressure,
pulse, and body temperature determinations. Of the
total of 2265 subjects, 57.5% are male (n = 1303) and
42.5% female (n = 962). The average age is 33.8 ± 12.2
years, with a range from 18 to 69 years. Participation as
healthy controls for the GRAS sample was anonymous,
with information restricted to age, gender, blood donor
health state and ethnicity. Comparable to the patient
population (Table 2), almost all control subjects were of
European Caucasian descent (Caucasian 97.8%; other
ethnicities 2%; unknown 0.2%). (2) For selected cognitive
measures and olfactory testing, 103 additional healthy
volunteers were recruited as control subjects (matched
with respect to age, gender, and smoking habits). These
healthy controls include 67.0% male (n = 69) and 33.0%
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Table 1 GRAS data collection manual: Table of contents

category content reference in the paper

legal documents/ethical requirements patient information, informed consent form, confidentiality form, and others...

patient history general information (age, sex, ethnicity,...) ® table 2

education/employment ® table 2

living situation ® table 2

legal history

medication including side effects ® table 4

medical history

family history

global quality of lifea ® table 2 and figure 6

birth history/traumatic brain injury

stressful life events

suicidal thoughts/suicide attempts

hospitalization history ® table 2 and figure 6

clinical interviews/ratings parts of SCID-I: addiction, anxiety, affective disorders, psychotic disorders*b

Positive and Negative Syndrome Scale* (PANSS)c ® table 2 and figure 6

Clinical Global Impression* (CGI)d ® table 2 and figure 6

Global Assessment of Functioning* (GAF)e ® table 2 and figure 6

questionnaires State-Trait-Anxiety-Inventory* (STAI)f ® table 2 and figure 6

Brief Symptom Inventory* (BSI)g ® table 2 and figure 6

Toronto Alexithymia Scale* (TAS)h ® table 2

cognitive tests premorbid IQ (MWT-B)i, j ® table 3 and figure 7

reasoning (LPS-3)k ® table 3 and figure 7

letter-number-span (BZT)l ® table 3 and figure 7

finger dotting and tappingm ® table 3 and figure 7

trail making tests (TMT-A and TMT-B)n ® table 3 and figure 7

verbal fluency (DT/RWT)o, p

digit-symbol test (ZST)q ® table 3 and figure 7

verbal memory* (VLMT)r ® table 3 and figure 7

physical examination Testbatterie zur Aufmerksamkeitsprüfung (TAP)s ® table 3 and figure 7

general physical examination

Cambridge Neurological Inventory (CNI)t ® table 5 and figure 8

Contralateral Co-Movement Test (COMO)u

Barnes Akathisia Rating Scale (BARS)v ® figure 8

Simpson-Angus Scale (SAS)w ® figure 8

Tardive Dyskinesia Rating Scale (TDRS)x ® figure 8

Abnormal Involuntary Movement Scale (AIMS)y ® figure 8

odor testing (ORNI Test)z

blood sampling (DNA, serum)

*questionnaires and cognitive tests in respective German versions
a Based on a visual analogue scale (Krampe H, Bartels C, Victorson D, Enders CK, Beaumont J, Cella D, Ehrenreich H: The influence of personality factors on disease progression
and health-related quality of life in people with ALS. Amyotroph Lateral Scler 2008, 9:99-107). bWittchen H-U, Zaudig, M. and Fydrich, T.: SKID-I (Strukturiertes Klinisches
Interview für DSM-IV; Achse I: Psychische Störungen). Göttingen: Hogrefe; 1997. cKay SR, Fiszbein A, Opler LA: The positive and negative syndrome scale (PANSS) for
schizophrenia. Schizophr Bull 1987, 13(2):261-276. dGuy W: Clinical Global Impression (CGI). In ECDEU Assessment manual for psychopharmacology, revised National Institue of
Mental Health. Rockville, MD; 1976. eAmericanPsychiatricAssociation: Diagnostic and statistical manual of mental disorders, 4th edition (DSM-IV). Washington, DC: American
Psychiatric Press; 1994. fLaux L, Glanzmann P, Schaffner P, Spielberger CD: Das State-Trait-Angstinventar (STAI). Weinheim: Beltz; 1981. gFranke GH: Brief Symptom Inventory
(BSI). Goettingen: Beltz; 2000. hKupfer J, Brosig B, Braehler E: Toronto Alexithymie-Skala-26 (TAS-26). Goettingen: Hogrefe; 2001. iLehrl S, Triebig G, Fischer B: Multiple choice
vocabulary test MWT as a valid and short test to estimate premorbid intelligence. Acta Neurol Scand 1995, 91(5):335-345. jLehrl S: Mehrfach-Wortschatz-Intelligenztest MWT-B.
Balingen: Spitta Verlag; 1999. kHorn W: Leistungsprüfsystem (LPS). 2 edition. Goettingen: Hogrefe; 1983. lGold JM, Carpenter C, Randolph C, Goldberg TE, Weinberger DR:
Auditory working memory and Wisconsin Card Sorting Test performance in schizophrenia. Arch Gen Psychiatry 1997, 54(2):159-165. mChapman RL: The MacQuarrie test for
mechanical ability. Psychometrika 1948, 13(3):175-179. nWar-Department: Army Individual Test Battery. Manual of directions and scoring. Washington, D.C.: War Department,
Adjutant General’s Office; 1944. oKessler J, Denzler P, Markowitsch HJ: Demenz-Test (DT). Göttingen: Hogrefe; 1999. pAschenbrenner S, Tucha O, Lange KW: Der Regensburger
Wortflüssigkeits-Test (RWT). Göttingen: Hogrefe; 2000. qTewes U: Hamburg-Wechsler Intelligenztest fuer Erwachsene (HAWIE-R). Bern: Huber; 1991. rHelmstaedter C, Lendt M,
Lux S: Verbaler Lern- und Merkfåhigkeitstest (VLMT). Goettingen: Beltz; 2001. sZimmermann P, Fimm B: Testbatterie zur Aufmerksamkeitsprüfung (TAP). Version 1.02c.
Herzogenrath: PSYTEST; 1993. tChen EY, Shapleske J, Luque R, McKenna PJ, Hodges JR, Calloway SP, Hymas NF, Dening TR, Berrios GE: The Cambridge Neurological Inventory:
a clinical instrument for assessment of soft neurological signs in psychiatric patients. Psychiatry Res 1995, 56(2):183-204. uBartels C, Mertens N, Hofer S, Merboldt KD, Dietrich J,
Frahm J, Ehrenreich H: Callosal dysfunction in amyotrophic lateral sclerosis correlates with diffusion tensor imaging of the central motor system. Neuromuscul Disord 2008, 18
(5):398-407. vBarnes TR: The Barnes Akathisia Rating Scale - revisited. J Psychopharmacol 2003, 17(4):365-370. wSimpson GM, Angus JW: A rating scale for extrapyramidal side
effects. Acta Psychiatr Scand Suppl 1970, 212:11-19. xSimpson GM, Lee JH, Zoubok B, Gardos G: A rating scale for tardive dyskinesia. Psychopharmacology (Berl) 1979, 64
(2):171-179. yGuy W: Abnormal involuntary movement scale (AIMS). In ECDEU Assessment manual for psychopharmacology, revised National Institute of Mental Health.
Rockville, MD; 1976. zORNI Test (Odor Recognition, Naming and Interpretation Test; developed for the purpose of odor testing in schizophrenics; manuscript in preparation)

Ribbe et al. BMC Psychiatry 2010, 10:91
http://www.biomedcentral.com/1471-244X/10/91

Page 4 of 20



(n = 34) female subjects with an average age of 39.02 ±
13.87 years, ranging from 18 to 71 years.

Traveling team
The GRAS team of traveling investigators consisted of 1
trained psychiatrist and neurologist, 3 psychologists and
4 medical doctors/last year medical students. All investi-
gators had continuous training and calibration sessions
to ensure the highest possible agreement on diagnoses
and other judgments as well as a low interrater variabil-
ity regarding the instruments applied. Patient contacts
were usually prepared by colleagues/personnel in the
respective collaborating psychiatric centers (Figure 2) to
make the work of the travel team as efficient as possible.

The GRAS manual
A standardized procedure for examination of the
patients has been arranged with the GRAS manual,
composed for the purpose of the GRAS data collection.
Table 1 presents its contents, including established
instruments, such as clinical interviews/ratings, ques-
tionnaires, cognitive and neurological tests [2,29-53].

GRAS operating procedure
The GRAS data base operating procedure leading from
the large set of raw data provided by the travel team
to the data bank with its several-fold controlled and
verified data points is illustrated in Figure 4. Already
during the time when the travel team examined
patients all over Germany, a team of psychologists
started to work on the development of the GRAS data
base, integrating the raw data to ultimately result in
over 3000 phenotypic data points per patient (total of
over 3.000 000 data points at present in the data col-
lection) (Figure 5). Most importantly, the chart
records/medical reports of all patients were carefully
screened, missing records identified and, in numerous,
sometimes extensive and repeated, telephone and writ-
ten conversations, missing psychiatric discharge letters
of every single patient organized. After careful study
and pre-processing of raw data and chart records, the
confirmation of the diagnoses, determination of age of
onset of the disease and prodrome as well as other
essential readouts were achieved by meticulous con-
sensus decisions.
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Figure 2 Collaborating centers and patient numbers. Map of Germany displaying the locations of all 23 collaborating centers that were
visited by an invariable team of traveling investigators. The table next to the map provides numbers of patients examined in each center. Some
centers were visited more than once.
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Statistical analyses
For the establishment of the data base and for basic sta-
tistical analyses of the data, SPSS for Windows version
17.0 [54] was used. Comparisons of men and women in
terms of sociodemographic and clinical picture as well
as neurological examination were assessed using either

Mann-Whitney-U or Chi-square test. Prior to correla-
tion and regression analyses, selected metric phenotypic
variables were standardized by Blom transformation
[55]. The Blom transformation is a probate transforma-
tion into ranks and the resulting standardized values are
normally distributed with zero mean and variance one.
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Figure 3 Patient recruitment and flow: (a) Recruitment efficiency 2005 - 2008. Cumulative numbers of recruited patients per quarter of the
year are shown in bar graphs. Note that steady-state recruitment is ongoing. (b) Patient flow. Of 1085 patients examined, the diagnosis of
schizophrenia or schizoaffective disorder could not be confirmed for 48. Instead, alternative diagnoses had to be given.
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Table 2 GRAS sample description

total men women statistics

N % mean (sd) median N % mean (sd) median N % mean (sd) median c 2/Z P

sociodemographics

total n 1037 100 693 100 344 100

age (in years) 39.52
(12.56)

39.05 37.57
(11.97)

36.67 43.46
(12.80)

42.85 Z = -6.980 <
0.001*

education
(in years)

11.94 (3.37) 12.00 11.71 (3.34) 12.00 12.42 (3.39) 12.00 Z = -2.714 0.007*

ethnicity: caucasian 992 95.66 661 95.38 331 96.20

african 7 0.68 6 0.87 1 0.30

mixed 10 0.96 7 1.01 3 0.90 c2 = 1.202 0.753

unknown 28 2.70 19 2.74 9 2.60

native tongue: German 902 86.98 591 85.71 311 90.67

bi-lingual German 46 4.44 38 4.33 8 1.46 c2 = 6.899 0.032*

other 89 8.58 64 9.96 25 7.87

marital status: single 748 72.13 575 82.97 173 50.44

married 129 12.44 48 6.93 81 23.32

divorced 124 11.96 57 8.23 67 19.53 c2 =
121.516

<
0.001*

widowed 13 1.25 3 0.43 10 2.92

unknown 23 2.22 10 1.44 13 3.79

living situation: alone 292 28.16 201 29.00 91 26.45

alone with children 17 1.64 0 0 17 4.94

with partner (± children) 137 13.20 50 7.22 87 25.29

With parents 157 15.14 121 17.46 36 10.47

with others (family members,
friends)

71 6.85 53 7.65 18 5.23 c2 =
116.823

<
0.001*

sheltered home 282 27.19 212 30.59 70 20.35

forensic hospital 54 5.21 43 6.20 11 3.20

homeless 4 0.39 4 0.58 0 0

unknown 23 2.22 9 1.30 14 4.07

clinical picture

diagnosis: classical schizophrenias
schizoaffective disorders

852
185

82.16
17.84

615
78

88.74
11.26

237
107

68.90
31.10

c2=
61.794

<
0.001*

age of onset of first psychotic
episode

25.75 (8.81) 23.00 24.49 (7.71) 22.00 28.28
(10.23)

26.00 Z = -5.705 <
0.001*

duration of disease (in years) 13.23
(10.71)

10.87 12.57
(10.38)

10.16 14.54
(11.24)

13.02 Z = -2.600 0.009*

hospitalization (number of
inpatient stays)

8.60 (9.76) 6.00 8.49 (9.95) 5.00 8.83 (9.38) 6.00 Z = -0.727 0.467
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Table 2: GRAS sample description (Continued)

chlorpromazine equivalents 687.36
(696.85)

499.98 706.67
(668.43)

520.00 648.35
(750.50)

450.00 Z = -2.428 0. 015*

PANSSa: positive symptoms 13.76 (6.32) 12.00 13.94 (6.16) 12.00 13.92 (6.64) 12.00 Z = -0.130 0.990

negative symptoms 18.23 (7.85) 17.00 18.14 (7.57) 17.00 18.11 (8.44) 17.00 0.886 0.376

general psychiatric symptoms 33.73
(11.83)

32.00 33.37
(11.31)

32.00 34.50
(12.81)

33.00 -0.886 0.376

total score 65.64
(23.40)

63.00 65.32
(22.41)

63.00 66.31
(25.37)

62.00 -0.025 0.980

Clinical Global Impression scaleb 5.57 6.00 5.57 (1.03) 6.00 5.57 (1.18) 6.00 Z = -0.121 0.894

Global Assessment of Functioningc 45.76 (0.68) 45.00 45.60
(16.30)

45.00 46.09
(19.11)

45.00 Z = -0.323 0.747

global quality of life d 5.41 (2.37) 5.00 5.43 (2.31) 5.00 5.38 (2.49) 5.00 Z = -0.378 0.705

Brief Symptom Inventory e: general severity index 0.88 (0.68) 0.71 0.87 (0.66) 0.71 0.92 (0.72) 0.71 Z = -0.687 0.492

State-Trait-Anxiety Inventory f : state anxiety 43.54
(10.89)

43.00 43.48
(10.45)

43.00 43.65
(11.79)

43.00 Z = -0.121 0.904

trait anxiety 44.96
(11.34)

45.00 44.67
(11.09)

45.00 45.56
(11.82)

46.00 -0.983 0.326

Toronto Alexithymia Scale g 2.59 (0.56) 2.61 2.58 (0.54) 2.55 2.60 (0.60) 2.66 Z = -0.607 0.544
aKay SR, Fiszbein A, Opler LA: The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull1987,13(2):261-276. bGuy W: Clinical Global Impressions (CGI). In ECDEU Assessment manual for
psychopharmacology, revised NationalInstitue of Mental Health. Rockville, MD; 1976. cAmericanPsychiatricAssociation: Diagnostic and statistical manual of mental disorders, 4th edition (DSM-IV). Washington, DC:
American Psychiatric Press; 1994. dBased on a visual analogue scale (Krampe H, Bartels C, Victorson D, Enders CK, Beaumont J, Cella D, Ehrenreich H: The influence of personality factors on disease progression and
health-related quality of life in people with ALS. Amyotroph Lateral Scler 2008, 9:99-107). eFranke GH: Brief Symptom Inventory (BSI). Goettingen: Beltz; 2000. fLaux L, Glanzmann P, Schaffner P, Spielberger CD: Das
State-Trait-Angstinventar (STAI). Weinheim: Beltz; 1981. gKupfer J, Brosig B, Braehler E: Toronto Alexithymie-Skala-26 (TAS-26). Goettingen: Hogrefe; 2001.
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Comparisons of men and women in terms of cognitive
performance were assessed by analyses of covariance,
using age, duration of disease, years of education and
chlorpromazine equivalents as covariates. For all inter-
correlation patterns, correlations of the particular target
variables were assessed using Pearson product-moment
correlation. Cronbach’s alpha coefficient was determined
for estimation of internal consistency of the target vari-
ables within a defined intercorrelation pattern. Multiple
regression analyses using the enter method were con-
ducted to evaluate the contribution of selected disease
related variables (duration of disease, positive symptoms,
negative symptoms, catatonic signs and chlorpromazine
equivalents) to 3 dependent variables: basic cognition/
fine motor functions, cognitive functions and global
functioning (GAF) [2]. The dependent variables basic
cognition/fine motor functions and cognitive functions
are both composite score variables. The basic cognition/
fine motor function score comprises alertness (TAP),
dotting and tapping (Cronbach’s alpha = .801) [39,46]
and the cognition score consists of reasoning (LPS3), 2
processing speed measures (TMT-A and digit-symbol
test, ZST), executive functions (TMT-B), working mem-
ory (BZT), verbal learning & memory (VLMT) and

divided attention (TAP) [37,38,41,44-46] (Cronbach’s
alpha = .869). For both scores, a Cronbach’s alpha >.80
indicates a high internal consistency as prerequisite for
integrating several distinct items into one score. Multi-
ple regression analyses were conducted for the total
sample and separated for men and women.

Results
Biographic and clinical data
The GRAS data collection comprises presently (as of
August 2010) 1037 patients with confirmed diagnosis of
schizophrenia (82.2%) or schizoaffective disorder
(17.8%). A total of 693 men and 344 women fulfilled the
respective diagnostic requirements of DSM-IV. Table 2
provides a sample description, both total and separated
for male and female patients, with respect to sociode-
mographic data and clinical picture. There are some dif-
ferences between genders in the GRAS sample: Women
are older, less single, have more years of education,
more diagnoses of schizoaffective disorders, longer dura-
tion of disease, later age of onset of first psychotic epi-
sode and lower doses of antipsychotics. However,
regarding determinants of the clinical picture, e.g.
PANSS scores [30], genders do not differ significantly.

raw data
from

travel team

meticulous double-check of entered data

confirmation of consensus diagnosis based on 
chart records (e.g. first diagnosis, first psychotic 
episode, current diagnosis, differential diagnosis)

determination of age of onset, duration of 
prodromal symptoms, medication history, pattern 

of course, psychiatric and medical comorbidity

continuous training and calibration sessions
of all raters and research assistants

analysis and entering of questionnaire data, rating 
scales and neuropsychological tests

collection of all
psychiatric  
discharge

letters of every 
single patient

careful study & 
preprocessing of 

all collected 
information

result:
data bank of 
> 3,000,000
phenotypic
data points

screening of 
chart records/ 

medical reports,
identification of 
missing records

Figure 4 Development of the GRAS data bank. Raw data, brought to Göttingen by the traveling team of examiners, were only entered into
the data base after careful and comprehensive data re-checking, also based on patient charts and discharge letters. During the whole process,
continuous calibration sessions and repeated re-checking of the entered data took place.
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An intercorrelation pattern of selected clinical readouts,
obtained by (1) clinical ratings and (2) self-ratings of the
patients and complemented by (3) ‘objective data’, in
this case medication and hospitalization, is presented in
Figure 6. The Cronbach’s alpha of .753 suggests that
items derived from the 3 different perspectives harmo-
nize well. Whereas patient ratings of quality of life and
state anxiety (STAI) [32] are only weakly correlated with
professional clinical ratings and objective data, the
patients’ self-estimated symptom burden as measured
with the BSI [33] shows moderate to good correlation.

Cognition
For the ongoing/planned genetic analyses, not only the
clinical picture with its schizophrenia-typical positive
and negative symptoms, but particularly cognition plays
an important role. The cognitive tests applied in the
GRAS data collection show an intercorrelation pattern
that further underlines quality and internal consistency
of the data obtained by the invariable team of investiga-
tors (Figure 7). Table 3 represents the cognitive perfor-
mance data of the complete GRAS sample in the
respective domains. In addition, the performance level

of men and women is given as well as - for comparison
- available normative data of healthy individuals. Since
for dotting and tapping [39], no normative data were
available in the literature, the values shown in Table 3
were obtained from the healthy GRAS control popula-
tion for cognitive measures (n = 103; see patients and
methods).
Comparing cognitive performance of schizophrenic

men and women, analyses of covariance have been con-
ducted, with age, duration of disease, years of education
and chlorpromazine equivalents as covariates, which
revealed significant gender differences in discrete cogni-
tive domains. Men performed better in reasoning (F =
17.62, p <.001), alertness (F = 28.30, p <.001 for reaction
time and F = 10.39, p = .001 for lapses), and divided
attention (F = 14.07 p <.001 for reaction time and F =
22.12, p <.001 for lapses). In contrast, female schizo-
phrenic patients were superior in verbal memory tasks
(F = 12.38, p <.001) and digit symbol test (F = 19.24, p
<.001). With respect to normative data obtained from
healthy controls, cognitive data of all schizophrenic
patients are in the lower normal range (percentile rank
= 16 for digit symbol test) or even below (percentile

ffamily history: prevalence of 
spectrum disorders…

sociodemographic characteristics:
education, training, forensic information…

psychopathology: psychiatric ratings, subjective symptoms, course, 
diagnostic categories, hallucination and delusion phenomena…

neurological examination: neurological standard exam, 
soft signs, odor testing, saccadic eye movements…

neuropsychology / cognition: speed of processing, attention / vigilance, 
working memory, verbal learning, reasoning / problem solving (executive functioning), motor 
function, crystalline / fluid intelligence…

birth complications: prolonged birth, 
asphyxia, premature birth…

psychiatric comorbidity: anxiety, depression, mania, 
substance abuse, e.g. alcohol, cannabis… 

medication history: type, combination, 
dose of antipsychotic medication during 
disease course, side effects...

physical examination:
minor abnormalities, comorbidity… social functioning: living skills, employment, 

social network, quality of life…

disease history: age of onset, duration of 
prodromal symptoms, first diagnosis, first 
psychotic episode…

neuro- and psychotrauma: cerebral contusion, 
loss of consciousness, abuse during childhood, migration…

phenotype
overview

hospitalization: number and duration 
of psychiatric inpatient stays and forensic stays…

Figure 5 Phenotype overview. Various different domains covered by the GRAS data collection are displayed. These domains will also deliver
the basis for further sophistication of phenotypical readouts.
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ranks 10 for verbal memory, TMT-A, TMT-B, alertness
and divided attention). Only for reasoning (LPS) [37]
and premorbid intelligence (MWT-B) [36], schizophre-
nic subjects lie in the average range (percentile ranks of
31 and 43.5 respectively).

Antipsychotic medication and side effects
Another important feature of schizophrenic patients that
may influence their every-day functioning and perfor-
mance, and result in a considerable number of side effects,
is their antipsychotic medication. The GRAS data collec-
tion contains information on type, dose, duration of medi-
cation and drugs prescribed over the years. The mean
dose of present antipsychotic medication of the whole
GRAS population, expressed as chlorpromazine equiva-
lents [56] amounts to 687.36 (± 696.85). Chlorpromazine
equivalents in male are significantly higher as compared to
female patients (Table 2). An overview of self-reported
side effects of current antipsychotic medication in the

GRAS sample, again sorted by gender, is given in Table 4.
Of the 1037 patients with confirmed diagnosis of schizo-
phrenia/schizoaffective disorder, 24 were presently not on
antipsychotic drugs, whilst for 1 patient the current medi-
cation was unknown. Of the remaining 1012 patients who
currently receive antipsychotic medication (16.5% first
generation antipsychotics, 54.1% second generation anti-
psychotics and 29.4% mixed) and were all explicitly inter-
viewed regarding medication side effects, only 423
reported any. The discrepancy between side effects mea-
sured versus side effects based on patients’ reports
becomes obvious when considering for instance the num-
ber of patients with clear extrapyramidal symptoms: A
total of 335 subjects measured by Simpson-Angus Scale
(mean score >.3) [50] contrasts only 117 patients self-
reporting extrapyramidal complaints. External rating of
extrapyramidal side effects in the GRAS population was
comprehensively performed, utilizing a number of respec-
tive instruments which all showed significant

self ratings (patients)clinical ratings

objective data

Cronbach's alpha=.753

state anxiety
STAI

general 
psychopathology

PANSS

global 
assessment 

of functioning
GAF

r < .3 .3 < r < .6 .6 < r < .9 

medication
current

CPZ-equivalents

hospitalization
number of 

inpatient stays

quality of life
current

clinical global
impression

CGI

symptom burden
BSI-GSI

Figure 6 Clinical intercorrelation pattern. Correlations between measures of the clinical picture derived from different approaches: Patient
self-ratings, clinical rater judgement and ‘objective data’. Thickness of the lines represents the strength of correlation between two measures;
only significant correlations are displayed. Note the strong internal consistency expressed by a Cronbach’s alpha of .753.
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intercorrelation (Figure 8) [47,49-52,57]. A composite
score of the 6 Blom transformed scales, used for testing
potential gender effects, yielded no significant differences
in extrapyramidal symptoms in men versus women (Z =
-0.022, p = 0.982).

Neurological symptoms
Similar to cognitive readouts, evaluation of inherent
neurological symptoms in the schizophrenic patient
population are of tremendous interest, not only for
understanding the contribution of particular genes/
genetic markers and/or environmental factors to the
schizophrenic phenotype but also for estimating the
impact of potential neurological comorbidities. Table 5
provides an overview of neurological symptoms based
on the Cambridge Neurological Inventory (CNI) [47].
Only in the subscale ‘Failure to suppress inappropriate
response’, significant differences between men and

women (Z = -3.175, p = 0.001) became evident. Women
were less able to hold respective responses back, e.g. to
blink with one eye, leaving the other eye open, or to
perform saccadic eye movements without moving the
head.

Prediction of functioning
In order to delineate the influence of disease on func-
tioning in the GRAS sample, multiple regression ana-
lyses have been employed. These procedures assessed
the contribution of 5 disease-related variables, i.e. dura-
tion of disease, PANSS positive and negative scores [30],
catatonic signs [47], and dose of antipsychotic medica-
tion, to 3 dependent performance variables: (a) basic
cognition/fine motor functions, (b) cognitive perfor-
mance and (c) global functioning (Table 6). Regarding
basic cognition/fine motor function, multiple regression
analysis revealed a significant model accounting for

processing
speed
ZST

r < .3 .5 < r < .6

fine motor
tapping

alertness
TAP

fine motor
dotting

premorbid IQ
MWT-B

verbal memory
VLMT

.3 < r < .5

working
memory

BZTexecutive 
functions

TMT-B

processing
speed
TMT-A

divided
attention

TAP

reasoning
LPS3

basic cognition/ 
fine motor functions
Cronbach's alpha =.801

cognitive  functions
Cronbach's alpha =.819

.6 < r < .9
Figure 7 Cognitive intercorrelation pattern. Shown are all neuropsychological tests performed, together with their respective cognitive
domain. Thickness of the lines represents the strength of correlation between two tests; only significant correlations are displayed. Tests for
higher cognitive functions are labelled in orange; tests for basic (mainly basic cognition/fine motor dependent) functions in grey. Measures of
higher cognitive functions as well as measures of basic cognition/fine motor functions show powerful internal consistency (Cronbach’s alpha of
.819 and .801 respectively).
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32.4% of variance in the total sample. In fact, duration
of disease, negative symptoms, catatonic signs, and med-
ication (chlorpromazine equivalents) contributed signifi-
cantly to basic cognition/fine motor function, whereas
positive symptoms did not (b = -.006, p = .856). Accord-
ing to the standardized regression coefficients, duration
of disease and negative symptoms are the best

predictors of basic cognition/fine motor function (b =
-.346, p < .001 and b = -.334, p < .001). For higher cog-
nitive functions, the set of disease-related variables
explained 33% of variance in the total sample. Again,
duration of disease and negative symptoms are the best
predictors of higher cognitive functions (b = -.335, p <
.001 and b = -.351, p < .001). Positive symptoms did not

Table 3 Cognitive performance of GRAS patients. For comparison, normative data are presented wherever available2.

men women ANCOVA total normative data (PR) or
mean
sample

values of healthy
controls

N mean
(sd)

median N mean
(sd)

median F p N mean
(sd)

median N PR
(Percentile
Rank)

mean
(sd)

reasoning (LPS) 663 21.26
(6.70)

22.00 324 18.79
(6.31)

18.00 17.62 <
.001*

987 20.45
(6.67)

21.00 1556a 31 -

working memory (BZT) 627 13.24
(3.79)

14.00 312 12.62
(3.91)

13.00 1.20 .274 939 13.03
(3.84)

13.00 30b - 15.70
(2.6)

executive functions
(TMT-B)°

631 131.42
(104.21)

99.00 307 147.65
(121.09)

108.00 0.00 .956 938 136.73
(110.22)

100.00 24c 10 71.5
(31.07)

verbal memory1)

(VLMT)
602 41.15

(12.63)
41.00 302 42.68

(13.02)
42.00 12.38 <

.001*
904 41.66

(12.78)
42.00 89d 10 52.39

(7.87)

premorbid IQ1)(MWT-B) 613 25.96
(6.22)

27.00 311 26.21
(6.13)

27.00 0.69 .405 924 26.04
(6.19)

27.00 1952e 43.5 -

divided attention
(TAP)°

reaction time 651 759.67
(114.25)

743.43 308 805.16
(150.99)

780.04 14.07 <
.001*

959 774.28
(128.89)

755.05 200f 8 -

lapses 3.35
(7.15)

1.00 6.41
(13.18)

2.00 22.12 <
.001*

4.33
(9.62)

1.00

processing speed

trail making test A
(TMT-A)°

676 49.18
(35.22)

40.00 332 55.32
(42.22)

43.00 0.17 .683 1008 51.20
(37.76)

41.00 24c < 5 33.04
(7.89)

digit-symbol test
(ZST)

674 37.46
(12.58)

37.00 329 38.58
(14.14)

39.00 19.24 <
.001*

1003 37.83
(13.12)

38.00 200g 16 -

basic cognition/fine
motor function

alertness (TAP)°

reaction time 665 319.62
(116.13)

284.08 326 379.11
(161.80)

328.04 28.30 <
.001*

991 339.19
(135.73)

298.41 200f 10 -

lapses 0.52
(2.04)

0.00 1.18
(3.57)

0.00 10.39 .001* 0.73
(2.66)

0.00

dotting 673 46.10
(13.08)

46.00 320 45.36
(14.96)

46.00 1.62 .203 993 45.86
(13.71)

46.00 103h - 63.24
(11.03)

tapping 671 29.01
(8.57)

29.00 319 27.58
(9.00)

27.00 0.76 .783 990 28.55
(8.73)

28.00 103h - 37.63
(7.04)

° Higher scores reflect better performance, except for TMT-A, TMT-B, Alertness and Divided Attention (TAP)

* For statistical comparison (ANCOVA) between men and women values are corrected for age, duration of disease, chlorpromazine equivalents and years of
education (except MWT-B).
1) Non-native and non-bilingual German speaking patients are excluded (n = 89).
2) Percentile ranks (PR) < 15 indicate that the mean or the median of the total sample is below average in comparison to a normative sample.
aHorn W: Leistungsprüfsystem (LPS). 2 edition. Goettingen: Hogrefe; 1983. bGold JM, Carpenter C, Randolph C, Goldberg TE, Weinberger DR: Auditory working
memory and Wisconsin Card Sorting Test performance in schizophrenia. Arch Gen Psychiatry 1997, 54(2):159-165. cPerianez JA, Rios-Lago M, Rodriguez-Sanchez
JM, Adrover-Roig D, Sanchez-Cubillo I, Crespo-Facorro B, Quemada JI, Barcelo F: Trail Making Test in traumatic brain injury, schizophrenia, and normal ageing:
sample comparisons and normative data. Arch Clin Neuropsychol 2007, 22(4):433-447. dHelmstaedter C, Lendt M, Lux S: Verbaler Lern- und Merkfähigkeitstest
(VLMT). Goettingen: Beltz; 2001. eLehrl S: Mehrfach-Wortschatz-Intelligenztest MWT-B. Balingen: Spitta Verlag; 1999. fZimmermann P, Fimm B: Testbatterie zur
Aufmerksamkeitsprüfung (TAP). Version 1.02c. Herzogenrath: PSYTEST; 1993. gTewes U: Hamburg-Wechsler Intelligenztest fuer Erwachsene (HAWIE-R). Bern: Huber;
1991. hHealthy controls recruited for selected cognitive and olfactory testing (unpublished data).
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reach significance (b = - .015, p = .658). With respect to
global functioning, all chosen disease-related factors
accounted for 59.6% of variance in the total sample.
Only duration of disease per se did not reach signifi-
cance (b = -.028, p = .198). Positive and negative symp-
toms were the strongest predictors of global functioning
(b = - .441, p < .001 and b = -.380, p < .001).

Discussion
The present paper provides an overview of the GRAS
data collection, including (1) study logistics and proce-
dures, (2) sample description regarding sociodemo-
graphic data, disease-related variables, cognitive
performance and neurological symptoms, paying parti-
cular attention to gender differences, and (3) a first pre-
sentation of intercorrelation patterns for selected areas
of interest to phenotype studies. (4) In addition, disease-
related factors influencing important criteria of daily
functioning are evaluated in the >1000 GRAS patients.
Overall, the GRAS sample represents a typical schizo-
phrenic population in contact with the health system
and is - last not least due to its homogeneous data
acquisition - ideally suited for the ongoing and planned
phenotype-based genetic association studies (PGAS) (e.g.
[[11], and Grube et al: Calcium-activated potassium
channels as regulators of cognitive performance in schi-
zophrenia, submitted]).

The GRAS data collection has several remarkable
advantages, two of which are of major importance for
its ultimate goal, PGAS: (i) Different from other studies
dealing with the establishment of a schizophrenia data
base, all data for GRAS were collected by one and the
same traveling team of examiners, who frequently per-
formed calibrating sessions and rater trainings. This
effort has clearly paid off in terms of reliability and qual-
ity of the data, considering the internal consistencies of
the GRAS phenotypes, as exemplified in the displayed
correlation patterns. (ii) Even though the GRAS study
has been implemented as a cross-sectional investigation,
the GRAS data collection also includes solid longitudinal
information derived from the almost complete psychia-
tric chart records/discharge letters of all schizophrenic
patients. This longitudinal set of data has been essential
to e.g. reliably estimate prodrome versus disease onset, i.
e. occurrence of the first psychotic episode.
Comparable to other schizophrenia samples, the

GRAS sample comprises around two thirds of male and
one third of female patients [17,58]. Assuming that the
gender ratio in schizophrenia were 1:1 as claimed in
text books, but recently also questioned [59,60], then
two principal reasons may account for the gender distri-
bution observed here: (1) Schizophrenic women gener-
ally seem to have less contact with the health system
due to being better socially settled (later age of onset of

Table 4 Self-reported medication side effects of patients (N = 423)* according to treatment type

FGA1 SGA2

men women men women

Parkinson symptoms 17% 15.6% 3.8% 11.6%

dyskinetic/dystonic symptoms 35.8% 31.3% 9.4% 9.7%

akathisia 22.6% 12.5% 6% 6.8%

hyperprolactinaemia - - - 1.9%

hormonal dysfunctions (gynecomastia, absence/changes of menorrhea) - 9.4% - 5.8%

sexual dysfunction 7.5% - 10.3% -

vertigo (incl. hypotonia) 5.7% 12.5% 5.1% 8.7%

weight gain 9.4% 18.7% 38.3% 39.8%

diabetes mellitus - - 0.4% -

sialorrhea (’drooling’) - - 20.4% 6.8%

skin abnormalities, loss of hair 1.9% - 1.7% 5.8%

gastrointestinal symptoms 1.9% 6.3% 5.9% 7.8%

hyperhidrosis - - 2.6% -

psychological symptoms (loss of concentration, no drive, tiredness) 33.9% 28.1% 44.2% 31.1%

cardiovascular symptoms (tachycardia, hypertension) - - 1.3% 1.9%

impaired vision - - 1.7% 3.9%

dry mouth 5.7% 9.4% 5.1% 4.9%

urinary retention - 3.1% 1.3% -

number of patients who reported side effects 53 32 235 103
1FGA - first generation antipsychotics, typical antipsychotics
2SGA - second generation antipsychotics, atypical antipsychotics

*Only N = 423 patients (out of 1012 patients who were on antipsychotic medication) reported side effects (see text for details).
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disease) and protected within their families [61]; (2) A
certain (smaller) recruitment bias may be explained by
the fact that the traveling team of examiners visited
some institutions with an overrepresentation of males, e.
g. specialized forensic units or a hospital for psychotic
patients with co-morbid substance use disorders.
With the purposeful strategy to visit several different

facilities of psychiatric health care covering inpatients,
outpatients, residents of sheltered homes and forensic
patients, the GRAS approach tried to avoid biases inher-
ent to pure inpatient samples [58]. Nevertheless, patients
who are not in contact with the health care system are
unlikely to be integrated in any comparable data bases.
For instance, only 4 of the 1085 examined patients are
currently homeless, whereas among homeless people a
considerable proportion suffers from schizophrenia [62].
To reach them as well, different and more cost intensive

recruitment strategies would be required [13]. On the
other hand, the schizophrenic phenotype required for
the GRAS-PGAS studies pursued here, might be veiled
in this severely affected subsample of patients that is
additionally characterized by other specific problems, e.
g. a highly elevated incidence of multiple substance use
disorders and severe downstream medical comorbidities
[63,64].
Gender differences in schizophrenia as obvious from

the present data collection have been known for a long
time [65]. In agreement with the literature, men and
women in the GRAS sample differ by diagnosis, with
women having a higher rate of schizoaffective disorders
[66,67]. With respect to age of onset, education, indica-
tors of social integration (e.g. marital status, living situa-
tion) and medication, the present results are also in
perfect agreement with previous findings: Male patients

Parkinsonism

Tardive Dyskinesia

Barnes Akathisia 
Rating Scale

Tardive Dyskinesia 
Rating Scale

Simpson-Angus
Scale

Abnormal
Involuntary

Movement Scale

r < .3 .3 < r < .6 .6 < r < .9

TDRS

SAS

AIMS

BARS

CNI sub-scale

CNI sub-scale

Cronbach's alpha =.675

Figure 8 Extrapyramidal intercorrelation pattern. Shown are correlations between different neurological tests for measuring extrapyramidal
symptoms. Thickness of the lines represents the strength of correlation between two tests; only significant correlations are displayed. Cronbach’s
alpha of .675 shows that these measures have a decent internal consistency.
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are younger when the first psychotic episode occurs, are
more frequently single, more often dependent on sup-
ported living conditions (e.g. residential homes) and
show lower educational status [61,67,68]. Among the
explanations for the observed gender differences in schi-
zophrenia are the protective role of female hormones
[69] and social aspects like earlier marriage of young
women leading to a more protected environment at dis-
ease onset [13]. In line with these considerations is the
work of Häfner and colleagues [12]. In a prospective
design he could show that ‘the social course (of schizo-
phrenia) is determined by individual stage at illness
onset and by early illness course’ [70].
With respect to psychopathology and premorbid func-

tioning, the GRAS sample may be slightly different from
other schizophrenia samples reported in the literature
[67]. Several studies published in this area show that men
exhibit more negative symptoms, even in a geriatric sam-
ple [71,72], and that females have poorer premorbid cogni-
tive functioning than males [73]. In the GRAS patients,
there are no gender differences regarding psychopathology
and premorbid cognition. Importantly, clear support for a

comparable severity of psychopathology in men and
women of the GRAS sample is provided by the lack of
gender differences in numbers of hospitalizations, clinical
severity ratings, including global functioning (CGI, GAF
[2,31]), and self-ratings of symptom severity and anxiety.
One potential explanation for the discrepancies between
the GRAS sample and other studies regarding psycho-
pathology may be that patient numbers in some of the
other studies have been too low to give conclusive results.
In the assessment of premorbid cognitive functioning of
the GRAS sample, a methodological limitation could be
the retrospective determination of premorbid intelligence
using a so-called ‘hold’ measure, i.e. a multiple choice
vocabulary test [35]. Even though this is an accepted and
valid instrument to retrospectively estimate premorbid
intelligence [74], a prospective procedure might be more
accurate. In fact, Weiser and colleagues had the opportu-
nity to base their assessments on cognitive testing per-
formed on adolescents before starting their military
service [73], potentially explaining the deviating results.
Gender differences regarding current cognitive perfor-

mance are similar within the GRAS sample (even though

Table 5 Cambridge Neurological Inventory (CNI)a subscale sum scores (N = 893-942)

total men women statistics

sub scales Mean
(sd)

Median
(range)

Mean
(sd)

Median
(range)

Mean
(sd)

Median
(range)

Z p

Hard neurological signs

plantar reflexes (le/ri*), power in upper and lower limb (le/ri), and reflexes
(hyper- and hyporeflexia) in upper and lower limb (le/ri)

1.12
(1.70)

0.0 (0 -
10)

1.07
(1.66)

0.0 (0-8) 1.22
(1.78)

0.0 (0-
10)

-1.467 n.s

Motor coordination

finger-nose test (le/ri), finger-thumb tapping (le/ri), finger-thumb opposition
(le/ri), pronation-supination (le/ri); fist-edge-palm test (le/ri), Oseretsky test

4.11
(4.27)

3.0 (0-
20)

3.95
(4.17)

2.0 (0-
20)

4.44
(4.45)

3.0 (0-
20)

-1.629 n.s

Sensory integration

extinction, finger agnosia (le/ri), stereoagnosia (le/ri), agraphesthesia (le/ri),
left-right disorientation

3.66
(3.32)

3.0 (0-
15)

3.63
(3.32)

3.0 (0-
15)

3.73
(3.31)

3.0 (0-
14)

-0.521 n.s

Primitive reflexes

snout reflex, grasp reflex, palmo-mental reflex (le/ri) 0.84
(1.14)

0.0 (0-5) 0.80
(1.11)

0.0 (0-5) 0.91
(1.19)

0.0 (0-5) -1.363 n.s

Tardive dyskinesia

dyskinetic, sustained or manneristic face and head movement, simple or
complex abnormal posture, dyskinetic, dystonic or manneristic trunk/limb
movement

0.55
(1.17)

0.0 (0-9) 0.58
(1.25)

0.0 (0-9) 0.49
(0.98)

0.0 (0-7) -0.132 n.s

Catatonic signs

gait mannerism, gegenhalten, mitgehen, imposed posture, exaggerated or
iterative movement, automatic obedience, echopraxia

0.43
(0.96)

0.0 (0-8) 0.45
(0.98)

0.0 (0-8) 0.38
(0.91)

0.0 (0-7) -1.717 n.s

Parkinsonism

increased tone in upper and lower limb (le/ri), decreased associated
movements in walking, shuffling gait, arm dropping, tremor postural or
resting, rigidity in neck

1.76
(2.90)

0.0 (0-
15)

1.70
(2.85)

0.0 (0-
15)

1.89
(3.02)

0.5 (0-
15)

-1.172 n.s

Failure to suppress inappropriate response

blinking or head movement in saccadic eye movement, winking with one
eye

1.23
(1.49)

1.0 (0-6) 1.12
(1.42)

1.0 (0-6) 1.48
(1.62)

1.0 (0-6) -3.175 .001*

*le/ri - left and right
aChen EY, Shapleske J, Luque R, McKenna PJ, Hodges JR, Calloway SP, Hymas NF, Dening TR, Berrios GE: The Cambridge Neurological Inventory: a clinical
instrument for assessment of soft neurological signs in psychiatric patients. Psychiatry Res 1995, 56(2):183-204.

Ribbe et al. BMC Psychiatry 2010, 10:91
http://www.biomedcentral.com/1471-244X/10/91

Page 16 of 20



at a lower functioning level [75]) compared to healthy con-
trols [76] after considering age of onset, duration of dis-
ease, education and medication as covariates. Men
perform better in reasoning, alertness and divided atten-
tion but worse in verbal memory, confirming reports on
first-episode as well as chronically ill schizophrenic
patients [77].
Women in the GRAS study receive significantly lower

doses of chlorpromazine equivalents, confirming that
they require less medication to achieve a reasonable
treatment effect [78]. Importantly, regarding medication
side effects, there were no gender differences in extra-
pyramidal symptoms. There were also no differences in
the overall proportion of men and women who self-
reported side effects, but the pattern of complaints was
slightly different. For instance, women mentioned more
often hormonal dysfunction and vertigo (or related
symptoms like hypotonia), whilst men complained
mainly about sexual dysfunction. Altogether, it is worth
pointing out that the percentage of patients self-report-
ing side effects is low when compared to that with

objectively measured side effects, e.g. extrapyramidal
symptoms (11.3% versus 32.3%).
Explicit studies on gender differences in antipsychotic

medication side effects found a somewhat different dis-
tribution of complaints, e.g. more weight gain, diabetes
and specific cardiovascular diseases in females [78,79].
Here, one reason is certainly the still preliminary data
set of the GRAS collection evaluated, based at this point
exclusively on cross-sectional patient reports. For a
more appropriate coverage of medication side effects, all
charts/discharge letters of every GRAS patient (also of
those patients who did/could not report them), will have
to be screened and entered into the data base. Compre-
hensive information on antipsychotic (and other) drugs
and their side effects in the GRAS sample has been col-
lected and is waiting for analyses to support e.g. future
pharmacogenomic approaches, perhaps also in colla-
boration with industry partners.
In line with the findings of a recent meta-analysis [80],

positive symptoms of the GRAS patients do not influ-
ence higher cognitive function or basic cognition/fine

Table 6 Multiple regression analyses predicting a) basic cognition/fine motor functions, b) cognitive performance, c)
global functioning

total male female

b t p b t p b t p

a) basic cognition/fine motor functions1

duration of disease (years) -.346 -11.92 < .001 -.353 -9.68 < .001 -.318 -6.59 < .001

positive symptoms (PANSS) -.006 -0.18 .856 -.028 -0.69 .489 .065 1.08 .283

negative symptoms (PANSS) -.334 -10.05 < .001 -.293 -7.32 < .001 -.415 -7.01 < .001

catatonic signs (CNI) -.126 -4.26 < .001 -.128 -3.45 .001 -.161 -3.27 .001

medication (CPZ-equivalents) -.080 -2.70 .007 -.066 -1.83 .068 -.147 -2.84 .005

regression model r2 = .324
p < .001

r2 = .306
p < .001

r2 = .383
p < .001

b) cognitive performance2

duration of disease (years) -.335 -11.54 < .001 -.356 -9.72 < .001 -.294 -6.12 < .001

positive symptoms (PANSS) -.015 -0.44 .658 -.033 -0.80 .427 .023 0.38 .704

negative symptoms (PANSS) -.351 -10.47 < .001 -.320 -7.92 < .001 -.396 -6.56 < .001

catatonic signs (CNI) -.132 -4.46 < .001 -.103 -2.76 .006 -.204 -4.16 < .001

medication (CPZ-equivalents) -.082 -2.74 .006 -.060 -1.62 .105 -.140 -2.70 .007

regression model r2 = .330
p < .001

r2 = .305
p < .001

r2 = .394
p < .001

c) global functioning3

duration of disease (years) -.028 -1.29 .198 -.008 -0.28 .780 -.062 -1.78 .076

positive symptoms (PANSS) -.441 -17.33 < .001 -.458 -14.45 < .001 -.415 -9.60 < .001

negative symptoms (PANSS) -.380 -15.02 < .001 -.345 -10.97 < .001 -.430 -10.0 < .001

catatonic signs (CNI) -.060 -2.67 .008 -.050 -1.71 .088 -.093 -2.58 .011

medication (CPZ-equivalents) -.106 -4.71 < .001 -.122 -4.29 < .001 -.078 -2.07 .040

regression model r2 = .596
p < .001

r2 = .559
p < .001

r2 = .662
p < .001

1A basic cognition/fine motor composite score was used as a dependent variable comprising alertness (TAP), tapping, and dotting (Chronbachs alpha = .801).
2A cognitive composite score was used as a dependent variable consisting of reasoning (LPS3), 2 processing speed measures (TMT -A and digit-symbol test, ZST),
executive functions (TMT-B), working memory (BZT), verbal memory (VLMT) and divided attention (TAP) (Chronbachs alpha = .869).
3Global assessment of functioning (GAF) was used as a dependent variable.
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motor performance, whilst negative symptoms, catatonic
signs, duration of disease and antipsychotic medication
have a significant effect on both. The clinical ratings of
global functioning, however, strongly rely on positive as
well as negative symptoms, medication and catatonic
signs [81-83].

Conclusion
GRAS enables a novel phenotype-based approach to
understand the molecular-genetic architecture of schizo-
phrenia. The GRAS data collection encompasses a large
sample of comprehensively phenotyped, moderately to
severely affected schizophrenic patients. Proof-of-princi-
ple for the suitability of the GRAS data collection for
PGAS has already been demonstrated [[11], and Grube
et al: Calcium-activated potassium channels as regula-
tors of cognitive performance in schizophrenia, sub-
mitted]. Further extensive analyses of the accumulated
information on every single patient are ongoing.
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By pure endpoint diagnosis of the disease, the risk of developing

schizophrenia has been repeatedly associated with specific

variants of the neuregulin1 (NRG1) gene. However, the role of

NRG1 in the etiology of schizophrenia has remained unclear.

Since Nrg1 serves vital functions in early brain development of

mice, we hypothesized that human NRG1 alleles codetermine

developmentally influenced readouts of the disease: age of onset

and positive symptom severity. We analyzed 1,071 comprehen-

sively phenotyped schizophrenic/schizoaffective patients, diag-

nosed according to DSM-IV-TR, from the GRAS (G€ottingen
Research Association for Schizophrenia) Data Collection for

genetic variability in the Icelandic region of risk in the NRG1

gene. For the case-control analysis part of the study, we included

1,056 healthy individuals with comparable ethnicity. The

phenotype-based genetic association study (PGAS) was per-

formed on the GRAS sample. Instead of a risk constellation, we

detected that several haplotypic variants of NRG1 were, unex-

pectedly, less frequent in the schizophrenic than in the control

sample (mean OR¼ 0.78, range between 0.68 and 0.85). In the

PGAS we found that these ‘‘protective’’ NRG1 variants are

specifically underrepresented in subgroups of schizophrenic

subjects with early age of onset and high positive symptom

load. The GRAS Data Collection as a prerequisite for PGAS

has enabled us to associate protective NRG1 genotypes

with later onset and milder course of schizophrenia.
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INTRODUCTION

Schizophrenia is the collective term for a heterogeneous group of

severely disabling, chronic mental disorders. They affect approxi-

mately 1% of the population and are characterized by hallucina-

tions, delusions, disordered thought, cognitive impairment,

blunted emotions, and subtle motor abnormalities.

The etiology of schizophrenia has remained elusive, even though

twin studies have reported heritability estimates between 64% and

88%, clearly underlining its genetic roots [Cardno and Gottesman,

2000; Lichtenstein et al., 2009]. Following the landmark study of

Stefansson et al. [2002], the neuregulin1 gene (NRG1) on chromo-

some 8p12 has been consistently associated with the disease in

several human populations [Harrison and Law, 2006; Li et al.,

2006]. With odds ratios amounting up to 2.2 [Stefansson et al.,

2002], NRG1 is among the most prominent risk genes detected so

far [Harrison and Law, 2006; Li et al., 2006], and has also been

associated in healthy individuals or in relatively small groups of

schizophrenic patients with some specific features of the disease,

such as white matter anomalies [McIntosh et al., 2008; Sprooten

et al., 2009], reduced sensorimotor gating as measured by prepulse

inhibition [Hong et al., 2008] or abnormal cortical activation in

fronto-temporal areas [Hall et al., 2006].

The NRG1 gene is unusually large (1.4Mb), comprising �30

exons and a complex pattern of differential promoter usage and

alternative RNA splicing [Falls, 2003; Steinthorsdottir et al., 2004].

Multiple transcripts encode at least 16 different NRG1 isoforms,

including membrane-bound and soluble neuronal growth factors

that share theEGF-like signalingdomain. SixmajorNRG1 subtypes

can be defined by the presence or absence of transmembrane

domains and extracellular matrix attachment sites [Esper et al.,

2006]. All NRG1 isoforms signal to ErbB receptor tyrosine kinases

expressed by target cells.

In the developing nervous system, NRG1/ErbB4 signaling

displays numerous critical functions, including neurogenesis

[Ghashghaei et al., 2006], tangential migration of interneurons

[Flames et al., 2004; Wen et al., 2010], axon guidance [Lopez-

Bendito et al., 2006], synapse formation [Bjarnadottir et al., 2004]

andmyelination [Brinkmann et al., 2008;Mei andXiong, 2008]. All

of these developmental processes, when quantitatively impaired,

have the potential to impact on higher cortical function and

therefore make NRG1 a biologically plausible schizophrenia sus-

ceptibility gene [Corfas et al., 2004; Mei and Xiong, 2008].

According to previous association studies, the core region

conferring the risk to schizophrenia spans about 200 kb and in-

cludes several single nucleotide polymorphisms (SNPs) andmicro-

satellites. Contained in this area is the 5’ regulatory regionupstream

of exon 1 and exon 2, which define NRG1 isoforms IV and II,

respectively [Harrison and Law, 2006; Munafo et al., 2006].

We have hypothesized that the early developmental functions of

NRG1may explain the specific association of polymorphicmarkers

ofNRG1 with developmental features of the disease. To this end, a

‘‘phenotype-based genetic association study’’ (PGAS) was carried

out employing theG€ottingen Research Association for Schizophre-
nia (GRAS) Data Collection [Begemann et al., 2010; Ribbe et al.,

2010]. This database provides a comprehensive and standardized

phenotype characterization of as yet unprecedented detail of

>1,000 schizophrenic patients. For exploring the phenotypical

consequences of NRG1 genotypes, age of onset of the disease was

selected as primary indicator of the degree of developmental

disturbance. Further rationales were that an earlier age of onset

has been associated (a) with a higher familial/genetic load,

independent of any known genetic variants [Kumra and Charles

Schulz, 2008], and (b) with greater clinical and psychopathological

severity [Rutter et al., 2006], particularly positive symptoms in

some studies [Luoma et al., 2008].

Based on the analysis of four single nucleotide polymorphisms

(SNPs) and four microsatellites, covering the NRG1 core region of

risk, we first tested whetherNRG1 is a risk gene in the GermanGRAS

population, when compared to healthy controls. Instead of the

expectedriskconstellation,wedetected ‘‘protective’’NRG1genotypes

thatwe foundunderrepresented inpatientswithearly ageofonset and

highpositive symptom severity. These results shouldbe considered in

the context of neurodevelopmental functions of this gene.

MATERIALS AND METHODS

For a more comprehensive version of methods see Supplementary

Material. The G€ottingen Research Association for Schizophrenia

(GRAS) study has been approved by the Ethics Committee of

the Georg-August-University of G€ottingen, Germany (master

committee), and the local internal review boards of all participating

centers, and complies with the Helsinki declaration. The GRAS

Data Collection, set up as prerequisite for phenotype-based genetic

association studies (PGAS), was accumulated between 2005 and

2008 by an invariable team of traveling investigators, and contains

presently>3,000 data points per subject, including biographic and

family information, disease history, environmental risk factors,

comorbidities, and treatments. Moreover, it includes the results

of cross-sectional psychopathological, neuropsychological, and neu-

rological examinations [Begemann et al., 2010; Ribbe et al., 2010].

Subjects
Patients. The GRAS project comprises at present 1,071 patients

of 23 German psychiatric hospitals (Supplementary Table S1), diag-

nosed according to DSM-IV-TR [Wittchen et al., 1997; Association,

2000] with schizophrenia (78.0%; N¼ 835), schizoaffective disorder

(17.1%; N¼ 183) and other psychotic disorders/yet to be confirmed

(4.9%; N¼ 53). Patients were included regardless of the stage of the

disease (acute, chronic, residual, or remitted). Subjects had to be at

least 18 years old; there was no upper age limit. All study participants

and, if applicable, their legal representatives gave written informed

consent [for more detailed information on the GRAS sample see

Begemann et al., 2010; Ribbe et al., 2010]. Almost all of them were of

European Caucasian descent (Caucasian 95.3%; other ethnicities

1.6%; unknown 3.1%). The average age was 39.62� 12.76 years,

with a range from 18 to 83 years. Men (n¼ 714; 66.7%) were

37.57� 12.00, women (n¼ 357; 33.3%) 43.74� 13.26 years old.

Control subjects (N¼ 1,056) were voluntary blood donors,

recruited by the Department of Transfusion Medicine at the

Georg-August-University of G€ottingen, according to national

guidelines for blood donation. As such, they widely fulfill health

criteria, ensured by a broad pre-donation screening process con-
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taining standardized questionnaires, interviews, hemoglobin and

other blood parameters, blood pressure, pulse, and body tempera-

ture determinations [Begemann et al., 2010]. Of the 1,056 subjects,

58.4% were male (N¼ 617) and 41.6% female (N¼ 439). The

average age was 34.72� 12.33 years, with a range from 18 to

69 years. Comparable to the patient population, almost all control

subjects were of European Caucasian descent (Caucasian 97.8%;

other ethnicities 2%; unknown 0.2%). All donors gave written

informed consent.

Selected Phenotypes
Of all the variables available for each subject, age of onset and

psychopathology were exclusively selected as the phenotypes of

interest. Age of onset was defined as the age when the first psychotic

episode took place. Severity of psychopathology was ascertained by

means of Positive and Negative Syndrome Scale (PANSS) [Kay

et al., 1987]. To further validate the results of this hypothesis-driven

study, 2 control variables were introduced. As disease-related and

disease-unrelated control variables, basic cognition/fine motor

function (MacQuarrieTapping [Chapman, 1948]) andbody length

were used, respectively.

Genetic Analyses
To cover the previously described Icelandic haplotype of risk locus

[Stefansson et al., 2002] in the neuregulin1 gene (NRG1; Unigene

Hs.453951), four SNPs (SNP8NRG221132, SNP8NRG221533,

SNP8NRG241930, and SNP8NRG243177) and fourmicrosatellites

(MS487-2, MS478B14-848, MS420M9-1395, and D8S1810),

spanning a region of �220 kb were selected for the analysis. SNP

genotyping was performedwith either HybProbes or SimpleProbes

(TIB Molbiol, Berlin, Germany) on the Light Cycler480 (Roche,

Mannheim, Germany). Multiplex microsatellite genotyping was

carriedout ona 3730XLDNAAnalyzer (AppliedBiosystems, Foster

City, CA).

Statistical Analyses
Statistical analyses of the effect of genetic variability on selected

readouts were performed using SPSS for Windows version 17.0

(https://www.spss.com/de) and SAS v9.2 (http://www.sas.com/of-

fices/europe/germany/index.html). Age of onset underwent a

logarithmic transformation to achieve approximate normally dis-

tributed values. Haplotype association analyses of binary categori-

cal variables and estimation of linkage disequilibrium D’ were

performed with UNPHASED (v3.0.13). UNPHASED is an appli-

cation for performing genetic association analysis in nuclear fami-

lies and unrelated subjects. It implements maximum-likelihood

inference on haplotype and genotype effects while allowing for

uncertain phase and missing genotypes [Dudbridge, 2008]. For

consistency/simplification, the four microsatellites were trans-

formed into ‘‘pseudo-SNPs’’ by classifying each allele in short or

long (length shorter or longer than the mean repeat length; see

Supplementary Table S2) for some of the analyses. Genotypic

association of SNPs and ‘‘pseudo-SNPs’’ in the case–control study
was assessed by two-sided Cochran-Armitage trend tests, while the

full range of genotypes observed in microsatellites was analyzed by

two-sidednonparametric two-sampleKolmog�orov–Smirnov tests.

The association to ordinal scaled disease phenotypes (age of onset

and PANSS positive score) was assessed by one-sided Jonckheere-

Terpstra trend test and Wilcoxon rank sum test. The same proce-

dureswere employed to further check the specificity of the statistical

results by evaluating disease-related (basic cognition/fine motor

function) and disease-unrelated (body length) control variables.

These control variables were grouped into quartiles for analysis.

RESULTS

All single markers fulfilled the Hardy–Weinberg equilibrium crite-

ria using a P< 0.01 threshold (Supplementary Table S3). The

markers showed a strong to moderate degree of linkage disequilib-

rium between them (Supplementary Table S4). The single-marker

case–control study did not yield any association with the disease,

nor did it reveal gender differences (Supplementary Table S5).

Likewise, haplotypic analysis failed to replicate in theGRASpatients

the NRG1 at-risk haplotype finding previously described in the

Icelandic population.

However, the same analysis revealed a ‘‘protective’’ constellation

of NRG1 alleles cutting across several different haplotypic combi-

nations (meanOR¼ 0.78, range between 0.68 and 0.85) (Fig. 1 and

Supplementary Fig. S1), and partly opposite to the allelic risk

variants (in three of the four analyzed SNPs) described by Stefans-

son et al. [2002]. For the analyzed microsatellites, the protective

variants were essentially also opposite to those contained in the

Icelandic risk haplotype.

Following our hypothesis that genetic variants of NRG1 are

associated with the developmental profile of schizophrenia, we

analyzed the frequency distribution of these markers in subsets of

patients, defined by age of onset. This PGAS approach revealed

that several protective genetic variants in homozygosity were

underrepresented in the group of patients showing early age of

onset (�20 years) and also - to a lesser degree - in the group of

schizophrenic individuals with most severe positive symptomatol-

ogy (PANSS positive score higher than 18) (Fig. 1 and Supplemen-

tary Tables S6, S7a,b). The control variables basic cognition/fine

motor function and body length did not show any association with

NRG1 genotypes (all P values >0.05, Supplementary Table S8).

DISCUSSION

The present study has identified a ‘‘protective’’ role of NRG1 gene

variants specifically influencing age of onset and severity of positive

symptoms in the GRAS sample of schizophrenic patients. Even

though previous work also described a protective constellation in

Swedish and Korean populations based on case–control compari-

son [Kim et al., 2006; Alaerts et al., 2009], the protective effect itself

had not been associated with any phenotypical consequences.

By meta-analyses, NRG1 has been confirmed as a susceptibility

gene for schizophrenia in some but not all populations [Li et al.,

2006; Munafo et al., 2006]. The negative finding with respect to the

risk role of NRG1 presented here using the GRAS cohort may be

explained by population differences, by sample size, or both. In

contrast, PGAS has been successfully used in our cohort of>1,000

PAPIOL ET AL. 3
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patients to reveal that someNRG1 gene variants have a ‘‘protective’’

feature, as suggested by homozygous carriers being underrepre-

sented among patients with early onset and severe positive

symptoms. Interestingly, these markers are opposed to or overlap,

but are not identical with those that provide a higher risk for

schizophrenia by simple endpoint diagnosis in other studies. We

note that the Icelandic haplotype could not be associated with the

age of onset in a much smaller sample of patients [Voineskos

et al., 2009].

Interestingly, marker S4 (SNP8NRG243177), influencing both

age of onset and severity of positive symptoms in our cohort,

regulates the expression of the brain-specific NRG1 isoform type

IV, as shown by genotype-dependent mRNA expression in trans-

fected cells (luciferase assays) [Tan et al., 2007] as well as in human

FIG. 1. Schematic view of the 220 kb region of interest at the 50 region of the NRG1 gene. The Icelandic risk haplotype and its associated risk alleles
are given. Underneath, the German (GRAS) protective haplotype is presented. Several haplotypic combinations which contain the opposite alleles

of the risk constellation (see vertical squares) in markers S2, S3, S4, M2, and M3 are more frequent in controls than in the GRAS patients (see

Supplementary Fig. S1). At least for somemarkers, the protective genotypes are underrepresented in early onset cases and in patients with most

severe positive symptomatology. P-values refer to comparisons of patients with an early onset of the disease (�20 years) to the remaining

patients. Likewise, patients with a severe positive psychopathology (score� 18) are compared with the other patients. Frequency of protective

genotypes in the total healthy German (GRAS) control population is shown at the bottom table.
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post mortem samples [Law et al., 2006]. This would suggest that

altered (decreased) NRG1 expression might be protective in the

here reported context. However, RNA steady state levels in autopsy

material obtained from adult patients [Hahn et al., 2006; Law et al.,

2006] cannot predict the impact ofNRG1 gene expression levels in

all neurons or at all stages of brain development.

We have proposed that unfavorable fine-tuning of NRG1

expression and/or function during development due to genetic

variability is specifically connectedwith earlier onset of schizophre-

nia and severity of psychopathology, which has in principle been

confirmed by our findings. At first glance, the model of a

‘‘protective’’NRG1 allele, that is, involving a gene that is considered

as a ‘‘risk factor,’’ may appear paradoxical. However, as mentioned

above, two other studies, comparing cases and controls, have also

reported ‘‘protective’’ haplotypes inNRG1 [Kimet al., 2006;Alaerts

et al., 2009].

We suggest that the PGAS approach, in combination with

preclinical data on Nrg1 function in mouse models, can shed light

onto this puzzle, and may also help explaining the difficulties of

confirming the original association. NRG1/ErbB signaling has

distinct roles, both in brain development and in adult cognitive

functions, all of which are relevant to schizophrenia, but differently

perturbed by loss- and gain-of-function effects. For example,

NRG1/ErbB4 signaling has been directly implicated in the intra-

cortical migration of GABAergic interneurons and the refinement

of inhibitory synapses [Flames et al., 2004; Fazzari et al., 2010].

Altered expression ofNRG1 isoforms, the proposed consequence of

theNRG1 ‘‘at risk’’ or ‘‘protective’’ alleles,might therefore affect the

number and function of inhibitory cortical interneurons. This

could plausibly accelerate/delay the onset of a disease, in which

cortical inhibition fails [Lewis et al., 2005]. On the other hand,

NRG1/ErbB4 signaling attenuates glutamatergic neurotransmis-

sion in the mature cortex [Mei and Xiong, 2008; Buonanno, 2010],

and it is equally plausible that quantitatively changed NRG1

ultimately enhances cognitive dysfunction and other symptoms

that collectively result in the diagnosis of schizophrenia.

To conclude, our work associates for the first time in a large

population of >1,000 schizophrenic patients clinically relevant

phenotypes with NRG1 gene variants. In fact, distinct NRG1

variants are underrepresented in early onset and severe cases of

schizophrenia, delivering a phenotypical readout for the protective

constellation as derived fromour case-control analysis. Replication

of these results in independent samples would be desirable as well as

analysis of genetic/haplotypic variants in regions of the gene that

have not been considered in the present study. Moreover, further

studies—also involving more mechanism-targeted animal mod-

els—are needed in order to understand the molecular basis of the

dual risk/protective role of NRG1.
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Supplementary Tables 
 
Table S1.  
Collaborating Centers 

 

 

 

 Center Institution Head 

1 Bad Emstal –
Merxhausen 

Vitos Hospital of Psychiatry and 
Psychotherapy, Bad Emstal-Merxhausen 

Heinrich Kunze 
Michael Franz 

2 Bad 
Zwischenahn 

Karl-Jaspers-Hospital, 
Psychiatric Federation Oldenburger Land 

Marianne Becker-Emner 
Dunja Hinze-Selch 

3 Bonn Department of Psychiatry and Psychotherapy, 
University Medical Center of Bonn Wolfgang Maier 

4 Eltville-Eichberg Vitos Hospital of Forensic Psychiatry Eltville Roland Freese 

5 Fulda Department of Psychiatry and Psychotherapy, 
Hospital Fulda 

Adelheid Czernik 
Georg Wiedemann 

6 Giessen Vitos Haina Forensic Psychiatry Hospital, 
Haina, Giessen 

Rüdiger 
Müller-Isberner 

7a Göttingen Department of Transfusion Medicine  Joachim Riggert 

7b Göttingen Department of Psychiatry and Psychotherapy, 
University Medical Center of Göttingen 

Peter Falkai 
Eckart Rüther 

8 Günzburg Department of Psychiatry II, Ulm University, 
District Hospital Günzburg Thomas Becker 

9 Hofgeismar Vitos Hospital of Psychiatry and 
Psychotherapy Merxhausen, Hofgeismar Andreas Mielke 

10 Ingolstadt Department of Psychiatry and Psychotherapy, 
Hospital Ingolstadt Thomas Pollmächer 

11 Kassel Vitos Hospital of Psychiatry and 
Psychotherapy Merxhausen, Kassel Rolf Günther 

12 Kiel Hospital of Psychiatry and Psychotherapy, 
Center for Integrative Psychiatry Josef B. Aldenhoff 

13 Langenhagen Hospital of Psychiatry and Psychotherapy 
Langenhagen, Regional Hospitals Hanover Gunther Kruse 

14 Liebenburg Dr. K. Fontheim's Hospital for Mental Health Frank-Gerald Pajonk 

15 Lübbecke Department of Psychiatry and Psychotherapy, 
Hospital Lübbecke Udo Schneider 

16 Moringen Hospital of Forensic Psychiatry Martin Schott 
Dirk Hesse 

17 Mühlhausen Department of Psychiatry and Psychotherapy, 
Ecumenical Hospital Hainich Lothar Adler 

18 Rickling Hospital of Psychiatry and Psychotherapy Hans-J.Schwarz 
Wolfram Schreiber 

19 Rieden Addiction Hospital "Am Waldsee" Frank Löhrer 

20 Rostock Department of Psychiatry and Psychotherapy, 
University of Rostock Sabine Herpertz 

21 Taufkirchen Department of Psychiatry and Psychotherapy, 
Isar-Amper-Hospital, Taufkirchen (Vils) Matthias Dose 

22 Wilhelmshaven Department of Psychiatry and Psychotherapy, 
Reinhard-Nieter Hospital Here Folkerts 

23 Wunstorf Department of Psychiatry and Psychotherapy, 
Regional Hospitals Hanover 

Andreas Spengler 
Cornelia Oestereich 
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Table S2.  
Mean allelic repeat marker lengths for transforming microsatellites  

into ‘pseudoSNPs’ defined by ‘Short’ or ‘Long’ alleles 
 

Range of repeat lengths

Marker 

Mean allelic 
repeat marker 

length: definition 
of Short versus 

Long alleles  
Min Max 

M1 MS 487-2 Short< 9.11<Long 2 16 

M2 MS 478B14-848 Short< 5.78<Long 2 16 

M3 MS 420M9-1395 Short< 8.29<Long 2 20 

M4 D8S1810 Short<15.16<Long 2 30 
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Table S3.  
Hardy-Weinberg equilibrium (HWE) ascertainment in the 4 SNPs and the 4 microsatellites 

transformed into ‘pseudoSNPs’ (Table S2) in the GRAS sample and healthy controls  

 

Alleles Genotype frequency HWE 
Marker 

Min* Maj*
N 

Maj*/Maj* Maj*/Min* Min*/Min* p-Value

 Healthy controls 

S1 SNP8NRG221132 A G 1050 813 (77%) 221 (21%) 16 (2%) .9758

S2 SNP8NRG221533 C T 1053 455 (43%) 474 (45%) 124 (12%) .9994

S3 SNP8NRG241930 T G 1055 429 (41%) 490 (46%) 136 (13%) .9776

S4 SNP8NRG243177 T C 1054 404 (38%) 496 (47%) 154 (15%) .9961

M1 SNP_ MS 487-2 Long Short 1055 378 (36%) 499 (47%) 178 (17%) .8304

M2 SNP_ MS 478B14-848 Short Long 1055 253 (24%) 568 (54%) 234 (22%) .0433

M3 SNP_ MS 420M9-1395 Long Short 1053 525 (50%) 429 (41%) 99 (9%) .7057

M4 SNP_ D8S1810 Short Long 1050 572 (54%) 397 (38%) 81 (8%) .5806

 Schizophrenic patients 

S1 SNP8NRG221132 A G 1051 790 (75%) 247 (24%) 14 (1%) .5568

S2 SNP8NRG221533 C T 1051 464 (44%) 468 (45%) 119 (12%) .9981

S3 SNP8NRG241930 T G 1053 434 (41%) 486 (46%) 133 (13%) .9857

S4 SNP8NRG243177 T C 1050 408 (39%) 490 (47%) 152 (14%) .9695

M1 SNP_ MS 487-2 Long Short 1049 372 (35%) 517 (49%) 160 (15%) .6691

M2 SNP_ MS 478B14-848 Long Short 1048 274 (26%) 513 (49%) 261 (25%) .7964

M3 SNP_ MS 420M9-1395 Long Short 1047 535 (51%) 426 (41%) 86 (8%) .9957

M4 SNP_ D8S1810 Short Long 1018 567 (56%) 368 (36%) 83 (8%) .1099
 
Min*=Minor allele; Maj*=Major allele  
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Table S4.  
Linkage disequilibrium measure (D’) in the healthy control sample  

with respect to the genetic markers analyzed in this study 
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SNP8NRG221132 (S1) - 1 1 .94 .53 .44 .47 .49 

SNP8NRG221533 (S2)  - .86 .88 .37 .25 .26 .26 

SNP8NRG241930 (S3)   - .98 .34 .40 .27 .27 

SNP8NRG243177 (S4)    - .31 .25 .25 .24 

SNP_ MS 487-2 (M1)     - .67 .82 .64 

SNP_ MS 478B14-848 (M2)      - .76 .69 

SNP_ MS 420M9-1395 (M3)       - .70 

SNP_ D8S1810 (M4)         - 
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Table S5.  
Single-marker case-control genotypic association study  

and sex differences study 
 

p-Value  
Marker C-A Trend K-S 

Case-control study 
S1 SNP8NRG221132 .3625  

S2 SNP8NRG221533 .7289  

S3 SNP8NRG241930 .9783  

S4 SNP8NRG243177 .9597  

M1 SNP_ MS 487-2 .7323 1.0000 

M2 SNP_ MS 478B14-848 .3414 .9594 

M3 SNP_ MS 420M9-1395 .3977 .9866 

M4 SNP_ D8S1810 .9897 .6688 
Sex differences study 
S1 SNP8NRG221132 .5819  

S2 SNP8NRG221533 .9714  

S3 SNP8NRG241930 .3054  

S4 SNP8NRG243177 .9703  

M1 SNP_ MS 487-2 .4316 .9652 

M2 SNP_ MS 478B14-848 .6116 1.0 

M3 SNP_ MS 420M9-1395 .7165 .8258 

M4 SNP_ D8S1810 .3564 .3418 
 

C-A Trend: Cochran-Armitage trend test was used for analysis  
of SNPs and ‘pseudoSNPs’;  
K-S: Kolmogórov-Smirnov non-parametric test was applied to  
the whole range of genotypes of microsatellites (not using the  
‘pseudoSNP’ approach).  
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Table S6.  
Association of age of onset and PANSS positive score with NRG1 genetic variability. Patients with an 

early onset of the disease (≤20 years) were compared to the remaining data set. Likewise, patients with 

the severest positive psychopathology (PANSS positive score >18) were compared to the other patients. 

Results are shown for the global genotypic comparison or by grouping according to the homozygous 

carriers of the protective variants against the others. 

 

p-Value genotypic comparison p-Value protective genotype versus all 
other genotypes 

Age of onset PANSS positive Age of onset PANSS positive 

test test test test 
Marker 

JT Wilcoxon JT Wilcoxon JT Wilcoxon JT Wilcoxon 

S1 SNP8NRG221132 .1581  .9952  .0739  .4991  

S2 SNP8NRG221533 .0015  .4722  <.0001  .1490  

S3 SNP8NRG241930 .2155  .2140  .1319  .3811  

S4 SNP8NRG243177 .0589  .1644  .0155  .0215  

M1 SNP_ MS 487-2 .4682 .0537 .9265 .2462 .2503 .4765 .4823 .4733 

M2 SNP_ MS 478B14-848 .4102 .0651 .7613 .8979 .3862 .1425 .2678 .3412 

M3 SNP_ MS 420M9-1395 .4376 .5713 .6518 .7118 .0835 .0233 .2426 .1759 

M4 SNP_ D8S1810 .2182 .1566 .2214 .1982 .0811 .0297 .4268 .3139 
 

JT: Jonckheere-Terpstra trend-test for categorized values was used for the analysis of SNPs and ‘pseudoSNPs’ 
 
Wilcoxon: Wilcoxon rank sum test was applied to the whole range of genotypes of microsatellite markers                               
 (not using the ‘pseudoSNP’ approach) 
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Table S7a.  
Genotype distribution in patients grouped by age of onset 

Age of onset ≤20 21-30 31-50 >50 

SNP8NRG221132 (S1)         

GG 202 78% 343 76% 164 67% 18 90% 

AG 52 20% 97 22% 78 32% 2 10% 

AA 4 2% 9 2% 1 <1% - 0% 

SNP8NRG221533 (S2)         

TT 88 34% 214 48% 120 49% 9 45% 

CT 142 55% 188 42% 89 37% 10 50% 

CC 28 11% 47 10% 34 14% 1 5% 

SNP8NRG241930 (S3)         

GG 113 44% 185 41% 89 37% 9 45% 

TG 116 45% 206 46% 117 48% 10 50% 

TT 29 11% 57 13% 37 15% 1 5% 

SNP8NRG243177 (S4)         

CC 87 34% 186 42% 98 40% 9 45% 

CT 132 51% 196 44% 111 46% 9 45% 

TT 39 15% 64 14% 33 14% 2 10% 

SNP_ MS 487-2 (M1)         

Short/Short 87 34% 167 37% 85 35% 6 30% 

Long/Short 128 50% 218 49% 118 49% 11 55% 

Long/Long 41 16% 63 14% 39 16% 3 15% 

SNP_ MS 478B14-848 (M2)         

Short/Short 61 24% 120 27% 69 29% 5 25% 

Long/Short 127 50% 222 50% 106 44% 8 40% 

Long/Long 67 26% 106 24% 67 28% 7 35% 

SNP_ MS 420M9-1395 (M3)         

Short/Short 135 53% 234 52% 121 50% 8 40% 

Long/Short 105 41% 180 40% 95 40% 10 50% 

Long/Long 15 6% 35 8% 24 10% 2 10% 

SNP_ D8S1810 (M4)         

Short/Short 15 6% 35 8% 24 10% 2 11% 

Long/Short 87 35% 155 36% 86 37% 6 32% 

Long/Long 146 59% 245 56% 123 53% 11 58% 
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Table S7b.  
Genotype distribution in patients grouped by PANSS positive score 

PANSS positive score I: 7-8 II:  9-12 III: 13-17 IV: 18-38 

SNP8NRG221132 (S1)         

GG 189 73% 209 75% 188 77% 173 75% 

AG 65 25% 64 23% 53 22% 54 23% 

AA 4 2% 5 2% 2 1% 3 1% 

SNP8NRG221533 (S2)         

TT 119 46% 130 47% 103 42% 95 41% 

CT 112 43% 118 42% 104 43% 110 48% 

CC 27 10% 30 11% 36 15% 25 11% 

SNP8NRG241930 (S3)         

GG 96 37% 121 44% 102 42% 97 42% 

TG 129 50% 113 41% 103 42% 115 50% 

TT 33 13% 42 15% 38 16% 18 8% 

SNP8NRG243177 (S4)         

CC 111 43% 108 39% 98 41% 77 33% 

CT 112 44% 126 45% 105 44% 122 53% 

TT 34 13% 43 16% 38 16% 31 13% 

SNP_ MS 487-2 (M1)         

Short/Short 91 36% 94 34% 86 36% 81 35% 

Long/Short 118 46% 145 53% 122 51% 115 50% 

Long/Long 47 18% 37 13% 33 14% 34 15% 

SNP_ MS 478B14-848 (M2)         

Short/Short 61 24% 65 24% 60 25% 64 28% 

Long/Short 126 49% 142 51% 119 49% 102 44% 

Long/Long 68 27% 69 25% 62 26% 64 28% 

SNP_ MS 420M9-1395 (M3)         

Short/Short 131 52% 144 52% 124 51% 121 53% 

Long/Short 101 40% 104 38% 103 43% 92 40% 

Long/Long 22 9% 29 10% 14 6% 16 7% 

SNP_ D8S1810 (M4)         

Short/Short 19 8% 25 9% 17 7% 19 9% 

Long/Short 90 37% 94 35% 98 42% 71 32% 

Long/Long 137 56% 150 56% 120 51% 133 60% 
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Table S8.  
Association study of disease-related (basic cognition/fine motor 

function as measured by the tapping test) and disease-unrelated 

(body length) control variables with NRG1 genotypes. Results 

are shown after grouping of subjects into quartiles according to 

the respective variables. P-Values refer to the comparison of 

carriers of the protective variants against the others. 

 

p-Value protective genotype versus 
other genotypes  

Tapping Body length 

test test 
Marker 

JT Wilcoxon JT Wilcoxon

S1 SNP8NRG221132 .3752  .1829  

S2 SNP8NRG221533 .1066  .3933  

S3 SNP8NRG241930 .3858  .4130  

S4 SNP8NRG243177 .1378  .4963  

M1 SNP_ MS 487-2 .3498 .3499 .2957 .2958 

M2 SNP_ MS 478B14-848 .2338 .2338 .3461 .3461 

M3 SNP_ MS 420M9-1395 .1953 .1953 .1704 .1705 

M4 SNP_ D8S1810 .2808 .2809 .3560 .3561 
 

JT: Jonckheere-Terpstra trend-test for categorized values was used for  
analysis of SNPs and ‘pseudoSNPs’ 
 
Wilcoxon: Wilcoxon rank sum test was applied to the whole range of  
genotypes of microsatellites (not using the ‘pseudoSNP’ approach) 
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Supplementary Figure 
 
Figure S1.  
Summary of statistically significant protective haplotypes observed in the haplotypic analysis 

of the NRG1 region of interest with UNPHASED (blue rectangles). All p-values shown are 

nominal. %Patients and %Controls refer to the frequency of each haplotypic combination in 

GRAS patients and controls, respectively. Odds ratio (OR) and 95% Cornfield confidence 

interval (95%CI) for each protective haplotypic combination is also shown. Please note the at-

risk-haplotype region described in the Icelandic population (Stefansson et al., 2002) at the 

bottom (yellow-filled rectangle) as well as the red-framed upright rectangles focusing on 

those markers where opposite alleles exert opposite effects (protection/risk). 
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EXON1: NRG1 Type IV-specific exon 
EXON2: NRG1 Type II-specific exon 
S1: SNP8NRG221132 
S2: SNP8NRG221533 
S3: SNP8NRG241930 
S4: SNP8NRG243177 
M1: MS 487-2 
M2: MS 478B14-848 
M3: MS 420M9-1395 
M4: D8S1810 
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Supplementary Methods 
Genetic Analysis 

DNA Extraction and Normalization 
Genomic DNA was purified from whole blood using JETQUICK Blood & Cell Culture 

DNA Spin Kit (Genomed GmbH, Löhne, Germany) according to the manufacturer's 

protocol. Resulting DNA samples were aliquoted and stored at -80°C. For further 

analysis, DNA was normalized to 50ng/µl with an automated robotic platform 

(Microlab Star, Hamilton, Bonaduz, Switzerland). For quality control, each sample 

was analyzed with a 0.8% agarose gel. 

 
Single Nucleotide Polymorphism Analysis 
The SNPs (S2: SNP8NRG221533 & S3: SNP8NRG241930) were analyzed using 

Simple Probes (TIB Molbiol, Berlin, Germany) and called using the LightCycler® 480 

Genotyping Software implemented in the LightCycler® 480 system (Roche, 

Mannheim, Germany). The reaction mixture (10µl) was prepared with 40ng of DNA in 

384 well plates according to standard protocols (Roche). The concentration of MgCl2 

and the Genotyping Master Mix were adapted for each assay. The cycle conditions 

were as follows: denaturation of the template DNA with 95°C for 10min, amplification 

of the target DNA for 45 cycles of (1) 95°C for 10s, (2) 60°C for 10s and (3) 72°C for 

15s (temperature ramp rate 4.6°C/s in steps (1) and (3) and 2.4°C in (2)). Melting 

curve analysis was performed with 30s of 95°C, 40°C for 2min (ramp rate 2.0°C/s) 

and then a continuous ramping to 75°C with 3 acquisitions per °C. In each run, 8 

positive controls (hgDNA, Bioline, Luckenwalde, Germany) and negative water 

blanks were included for quality and internal control purposes. 

The SNPs (S1: SNP8NRG221132 & S4: SNP8NRG243177) were analyzed using 

HybProbes (TIB Molbiol, Berlin, Germany) in the same LightCycler® 480 system 

(Roche). The reaction mixture (5µl) was prepared with 40ng of DNA in 384 well 

plates according to standard protocols (Roche). Genotyping Master Mix was used in 

a 0.5X concentration.  

 
S1: SNP8NRG221132 
ARIA F: 5’ CTAATTTCTCCTGAACTCTGTATAAC 3’ 

ARIA R: 5’ GAGGCAGTAACAAAATAGACC 3’ 

Sensor mut: 5’ ACATTACTACCTTACATTGATATATGCATG-FL 3’ 
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Anchor: 5’ 640-CTTATACATTGTACATTCTGCTTAC p 3’ 

S4: SNP8NRG243177 
NRG1 F: 5’ CAAAACAAGGTTCCATTCTCTCAAA 3’ 

NRG1 R: 5’ CAGTCCAAATTGCCAACTTGC 3’ 

Sensor A: 5’ CCAGTATACATTCACTTGAACCCT-FL 3’ 

Anchor: 5’ 640-CATGGTGCTTCTAGCGATTTACTGAAA p 3’ 

 

Cycling conditions: denaturation of the template DNA with 95°C for 10min, 

amplification of the target DNA for 45 cycles of (1) 95°C for 10s, (2) 45°C (S1) or 

52°C (S4) for 15s and (3) 72°C for 10s (S1) or 18s (S4) (temperature ramp rate 

4.8°C/s in steps (1) and (3) and 2.5°C in (2)). Melting curve analysis was performed 

with 1min of 95°C, 40°C for 2min (ramp rate 2.0°C/s) and then a continuous ramping 

to 75°C with 5 acquisitions per °C. In each run, 8 positive controls (hgDNA, Bioline) 

and negative water blanks were included for quality and internal control purposes. 

 
Microsatellite Analysis 
Four polymorphic repeats in Intron 2 of NRG1 were amplified from genomic DNA by 

PCR. Primers for tetranucleotide repeat 487-2 and dinucleotide repeats 478B14-848 

and 420M9-1395 were chosen according to Steffanson et al. 2002 (Stefansson et al., 

2002) (deCODE Genetics http://www.decode.com/nrg1/markers/). Alleles “0” of 

microsatellites 478B14-848 and 420M9-1395 as described in (Stefansson et al., 

2002) correspond to alleles “4” and “8”, respectively, in our data analysis. 

 

M1: MS 487-2 (tetranucleotide repeat) 
Forward: 5’ AGTGAGTAGGGCTGGCTGCT 3’ (VIC-labeled) 

Reverse: 5’ GCTGCTAATATGGCCCCTTC 3’ 

M2: MS 478B14-848 (dinucleotide repeat)    
Forward: 5’ CCACATGTCCAACTGAAGAGG 3’ (FAM-labeled) 

Reverse: 5’ TCTCCATGTGTAAAACAATACATATCA 3’ 

M3: MS 420M9-1395 (dinucleotide repeat)   
Forward:: 5’ CTTTTAATCATGAAAGAATAGCAAAAA 3’ (FAM-labeled) 

Reverse: 5’ TGTTGTTGTATATTTCAGAATTTCCTT 3’ 



Papiol et al - Supplementary Material 
 

 14

Primers for dinucleotide repeat DS1810 (Accession number: GDB:613185) were 

chosen according to the sequences described in GenBank, 

(http://www.ncbi.nlm.nih.gov/Genbank/): 

M4: D8S1810 (dinucleotide repeat) 
Forward: 5’ ATGATGCTGAGTCCCCA 3’ (FAM-labeled) 

Reverse: 5’ CAGAGGGCTGATTTTATGC 3’ 

 

For each sample, the reaction mixture (20µL) was prepared in 384 well plates, each 

containing 50ng of human genomic DNA, NH4 Buffer (1x), 125µM dNTPs each, 

2.5mM MgCl2, 200nM FAM-labeled forward and reverse primers, and 1U Diamond 

polymerase (Bioline). The cycling program was carried out after a preheating step at 

94°C for 5min and included 30 cycles of (1) denaturation at 94°C for 30s, (2) 

annealing at 65°C for 30s and (3) extension at 72°C for 60s in a DNA Thermal Cycler 

(PTC-200 MJ Research, BioRad, Munich, Germany).  

The amplicons were separated using size electrophoresis on the ABI 3730 XL DNA 

Analyzer. Samples were diluted 1:50 with 0.3mM EDTA and 4µl were mixed with 6µl 

LIZ-500 Size Standard (Applied Biosystems, Foster City, USA). Raw data were 

processed using the Gene Mapper Software 4.0 (Applied Biosystems). 

Overall, successfully genotyped markers amounted to 97.2-99.1%. 
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