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Chapter 1

Introduction

“You have to begin to lose your memory, if only in bits and pieces, to re-

alize that memory is what makes our lives. Life without memory is no life at

all, just as an intelligence without the possibility of expression is not really an

intelligence. Our memory is our coherence, our reason, our feeling, even our

action. Without it, we are nothing.” - Luis Buñuel

Auguste Deter likely represents the most famous embodiment of this quotation by

Spanish filmmaker Luis Buñuel. Over 100 years ago, Auguste’s failing memory and erratic

behavior made her the patient of Dr. Alois Alzheimer at the Institution for the Mentally

Ill and for Epileptics in Frankfurt, Germany. Alzheimer recalled Auguste as a woman

confused by her surroundings and devoid of comprehension. Despite repeated questioning,

she only seemed capable of providing one coherent description of her state, “It is like I

have lost myself ”(Alzheimer, 1907).

Following Auguste’s death in 1906, her brain was given to Alzheimer for postmortem

analysis. He then described the histopathological features now commonly associated with

Alzheimer’s disease (AD): neuron loss, extracellular plaques and intracellular tangles.

Ultimately, Alzheimer’s case report on Auguste Deter gave this “lost woman”a place in

history as the first AD patient. Millions of people have since been diagnosed with AD,

making it the most common form of dementia. No cure for AD presently exists. As a

result, AD has become a pressing medical, social and economic issue.
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Chapter 1. Introduction

1.1 Clinical presentation of Alzheimer’s disease

1.1.1 Epidemiology

In 2010, it was estimated that 35.6 million people were living with dementia worldwide.

This number is expected to reach 115.4 million by the year 2050 (World Alzheimer Report,

2010). Currently, 1.2 million people suffer from dementia in Germany, with AD accounting

for approximately 66% of these cases (Deutsche Alzheimer Gesellschaft, 2010). Estimates

of AD prevalence in the United States put the number of affected individuals at 5.4

million in 2011, and it was the sixth leading cause of death in all age groups (Alzheimer’s

Association, 2011). Nearly 15 million people provided over $202 billion worth of unpaid

care for AD patients in the United States last year. At the current rate of diagnosis for

AD and other dementias, projected healthcare costs for these conditions in the United

States alone will reach $1.1 trillion by 2050 (Alzheimer’s Association, 2011).

1.1.2 Risk factors

Aging is the primary risk factor for AD. After the age of 65, an individual’s chances

of developing AD double every five years, reaching a cumulative lifetime risk of over 16%

beyond the age of 85 (Hebert et al., 1995; Seshadri et al., 2006). Cognitive elements,

such as low educational level and poor occupational achievement, further elevate the

probability of developing AD (Stern et al., 1994; Evans et al., 1997). There are also links

between AD and general health status. For example, cardiovascular risk factors like mid-

life hypercholesterolemia, hypertension, obesity and type II diabetes are associated with

an increased likelihood of AD and other dementias later in life (Kivipelto et al., 2005;

Solomon et al., 2009; Tsivgoulis et al., 2009; Cheng et al., 2011). Conversely, individuals

who remain physically active, challenge themselves mentally or consume an antioxidant-

rich diet lower their risk for a future AD diagnosis (Laurin et al., 2001; Wilson et al.,

2002; Hall et al., 2009; Polidori et al., 2009; Gu et al., 2010).

1.1.3 Disease progression

The initial clinical presentation of AD is a departure from the benign cognitive changes

associated with normal aging. Increased perception time, slower mental processing and

some minor memory impairments are commonplace in healthy, non-demented elderly

(Walsh et al., 1979; Birren and Fisher, 1995). These deficits remain relatively stable

with increasing age and do not hinder an individual’s ability to function on a daily basis

(Rubin et al., 1998). In contrast, early AD manifests as a progressive decline in previous
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Chapter 1. Introduction

cognitive abilities that noticeably interferes with an individual’s routine life (McKhann

et al., 1984).

Mild cognitive impairment (MCI) represents a mid-ground between normal cognitive

aging and full-blown dementia. Neuropsychological testing reveals that MCI patients

have a general preservation of daily functions but perform worse than education- and age-

matched controls in multiple cognitive domains. A diagnosis of “amnestic”MCI is given

if memory impairments are identified during cognitive screening (Petersen et al., 2009).

While amnestic MCI does increase the likelihood of a future AD diagnosis, it has limited

predictive value in determining whether a patient ultimately converts to AD (Gauthier

et al., 2006; Fischer et al., 2007). As a result, it was recently proposed that a separate MCI

category be designated to more accurately reflect prodromal AD (Albert et al., 2011).

Deficits in episodic memory and a decreased ability to retain new information are

the initial and most prominent manifestations of clinically-diagnosed AD (Knopman and

Ryberg, 1989; Welsh et al., 1991). Subtle alterations in personality, language disturbances

and spatial orientation problems also gradually appear during the disease course (Petry

et al., 1988; Locascio et al., 1995; Kalová et al., 2005). Eventually, multiple cognitive

domains are affected; impairments in attention, semantic memory (knowledge of facts,

concepts and definitions) and executive function (problem solving, planning and abstract

thinking) grow more pronounced with time (Hodges et al., 1991; Perry and Hodges, 1999).

Mid-to-late-stage AD patients suffer from worsening retrograde amnesia (Beatty et al.,

1988). Loss of daily life skills, aggressiveness, agitation and wandering makes AD patients

dependent on outside caregivers (Devanand et al., 1997). In the terminal phase of the

disease, nearly all cognitive faculties are severely impaired. An inability to perform basic

motor functions, such as swallowing, is common, and this may ultimately contribute to

the cause of death (Wada et al., 2001).

1.1.4 Diagnosis

The differential diagnosis of AD is based on medical history, neurological testing and

neuropsychological screening. A positive AD diagnosis requires evidence of memory im-

pairment and deficits in one of the following other areas: language (aphasia), motor

activity (apraxia), object recognition (agnosia) or executive function (planning, organiz-

ing, etc.). The decline in these functions must be gradual, continual and sufficient to

interfere with daily activities. Furthermore, an AD diagnosis should not be made in the

presence of delirium, and neurological and psychiatric illnesses should be ruled-out as the

underlying cause of symptoms (American Psychiatric Association, 2000).

5



Chapter 1. Introduction

A variety of tests are available to the clinician for assessing mental status. These tests

measure cognitive dimensions such as alertness, attention, short and long-term memory,

visuospatial abilities and executive function. Among other dementia screening tools, the

Mini-Mental State Exam, Short Blessed Test, and Clock Drawing are widely used (Folstein

et al., 1975; Katzman et al., 1983; Brodaty and Moore, 1997). In addition, blood tests and

magnetic-resonance imaging (MRI) may aid in excluding dementia due to comorbidities

and other processes unrelated to AD (Hort et al., 2010).

A definitive AD diagnosis can only be given upon autopsy. The present criteria for

neuropathological confirmation of AD are based upon the progression of neurofibrillary

tangle formation and the analysis of neuritic plaques (Braak and Braak, 1991; Mirra et al.,

1991). There is a high likelihood that dementia is due to AD when postmortem brain

shows frequent neuritic plaque deposition in the neocortex and abundant neurofibrillary

tangles in the entorhinal cortex, hippocampus and neocortex (Hyman and Trojanowski,

1997).

1.1.5 Treatment

Currently available AD treatments only manage symptoms rather than target the

underlying pathological processes of the disease. Four drugs are routinely prescribed to

alleviate cognitive deficits: donepezil, rivastigmine, galantamine, and memantine. The

use of these compounds is based on the impairments of the cholinergic and glutamatergic

neurotransmitter systems that occur in AD.

A decrease in glutamatergic neurons and dysfunction of glutamatergic synapses were

observed in early studies AD. (Mann et al., 1985; Greenamyre et al., 1985; Hardy et al.,

1987). It was accordingly proposed that malfunctioning glutamatergic clearance mecha-

nisms cause excitotoxic cell death in the AD brain (Greenamyre and Young, 1989; Francis,

2003). Memantine acts as a non-competitive N-methyl- D-aspartate (NMDA) receptor

antagonist that blocks NMDA channels in a voltage-dependent manner. This blockage

prevents glutamate-mediate excitotoxicity while still allowing for physiological NMDA re-

ceptor function (Chen et al., 1992; Parsons et al., 1993, 2007). Clinical studies have shown

that memantine delays cognitive decline in patients with moderate to severe AD. It may

provide further benefits when used in combination with the acetylcholinesterase inhibitors

donepezil, rivastigmine or galantamine (Wilkinson and Andersen, 2007; Atri et al., 2008).
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Chapter 1. Introduction

1.2 Neuropathology of Alzheimer’s disease

1.2.1 Amyloid deposits

Extracellular deposits of amyloid beta (Aβ) are one of the most prominent histopatho-

logical features of AD. These so-called amyloid plaques fall into two broad morphological

categories: diffuse and neuritic (Fig. 1.1). Both plaque types are detectable with anti-Aβ

antibodies, but only neuritic plaques are prominently stained by β-sheet-binding dyes,

such as Congo Red and Thioflavin S. A variety of pathological events occur in proximity

to neuritic plaques; focal neuron and synapse loss, gliosis and neuritic dystrophies have all

been reported (Lenders et al., 1989; Pike et al., 1995a; Masliah et al., 1990; Urbanc et al.,

2002). Neuritic dystrophies are swollen and distorted processes of axonal or dendritic ori-

gin that radiate from the core of a neuritic plaque. They are detectable with antibodies

against the amyloid precursor protein (APP), phospho-tau, neurofilaments and ubiqui-

tin, indicating a disruption of protein transport and attempts to degrade this blockage

(Dickson et al., 1990; Cras et al., 1991; Su et al., 1993; Dickson et al., 1999).

Figure 1.1: Amyloid
plaques. (Left) An exam-
ple of a silver-stained neuritic
plaque containing dystrophic
neurites (arrow). Adapted
from (Holtzman et al., 2011a).
(Right) A diffuse amyloid plaque
visualized by immunohistochem-
istry. Adapted from (Duyckaerts
et al., 2009).

Progressive neuritic plaque deposition is a hallmark of AD. Neuritic plaque formation

commonly begins in the neocortex and later affects the hippocampus and amygdala. By

the end stage of the disease, neuritic plaques are present in the brainstem and other

subcortical structures (Arnold et al., 1991; Thal et al., 2002). Predominantly diffuse

plaques are found in cognitively normal aged individuals. It has therefore been suggested

that a substantial increase in plaque burden is associated with the preclinical stages of

AD (Dickson et al., 1992; Knopman et al., 2003; Vlassenko et al., 2011). However, plaque

load ultimately correlates poorly with cognitive decline and dementia severity (Arriagada

et al., 1992; Giannakopoulos et al., 2003; Villemagne et al., 2011).
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1.2.2 Neurofibrillary tangles

Neurofibrillary tangles (NFTs) are another primary feature of AD histopathology (Fig.

1.2). Alois Alzheimer first described NFTs as intraneuronal, filamentous aggregates in

the perikarya and processes of neurons (Alzheimer, 1907). Over 50 years later, it was

discovered that these inclusions consist of paired helical filaments (PHFs), pairs of 10-nm-

diameter fibrils wound into a helical structure (Kidd, 1963). Later studies revealed that

PHFs are composed of hyperphosphorylated, insoluble tau (Grundke-Iqbal et al., 1986;

Lee et al., 1991).

Figure 1.2: Neurofibril-
lary tangles. Neurofib-
rillary tangles (arrows) vi-
sualized by immunostain-
ing with an anti-tau anti-
body. Adapted from (Brun-
den et al., 2009).

Tau is a microtubule assembly factor and a member of the microtubule-associated

protein (MAP) family (Weingarten et al., 1975; Witman et al., 1976). Its expression is

highest in the nervous system, where it mainly localizes to neuronal axons (Trojanowski

et al., 1989; Gu et al., 1996). The gene encoding tau is found on chromosome 17 and

consists of 16 exons (Neve et al., 1986). Six major tau isoforms are expressed in the

human central nervous system (CNS), and they result from the alternative splicing of

exons 2, 3, and 10 of the tau transcript (Goedert et al., 1989; Lee et al., 1989).

A critical function of neuronal tau is microtubule stabilization (Drechsel et al., 1992;

Gustke et al., 1994). Tau phosphorylation reduces its microtubule binding ability and

promotes its assembly into PHFs (Alonso et al., 1996, 2001). To date, several kinases

are known to phosphorylate tau at its multiple serine or threonine phosphorylation sites.

They include glycogen synthase kinase 3 (GSK-3), cyclin-dependent kinase 5 (Cdk5) and

mitogen-activated protein kinase (MAPK) (Drewes et al., 1992; Mandelkow et al., 1992;

Baumann et al., 1993).

Despite many recent insights into tau biology, the precise mechanisms through which

tau contributes to AD pathogenesis remain to be clarified. Nevertheless, the stereotypical

progression of NFTs is a mainstay for the diagnosis and staging of AD (Arnold et al.,

1991; Braak and Braak, 1991). Unlike neuritic plaque burden, NFT abundance strongly

correlates with the severity of cognitive deficits and the duration of illness (Arriagada

et al., 1992; Gómez-Isla et al., 1997).
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1.2.3 Brain atrophy

Cortical atrophy is the most obvious macroscopic characteristic of AD brain (Fig. 1.3).

Decreased temporal lobe volume and ventricular dilation are present early in the disease

course (Nestor et al., 2008; Bakkour et al., 2009; Dickerson et al., 2011). Neuron loss is the

primary cause of these atrophic changes, and it occurs in a region-specific manner. Among

other areas, reduced neuronal numbers have been documented in the entorhinal cortex,

CA1 region of the hippocampus, nucleus basalis of Meynert and locus coeruleus (Arendt

et al., 1983; West et al., 1994; Gomez-Isla et al., 1996; Busch et al., 1997). The cause

of neuron death in AD is presently debated. Early studies found variable correlations

between neuron loss and the presence of NFTs (Cras et al., 1995; Gómez-Isla et al., 1997).

Contradicting findings were also reported regarding the prevalence of apoptotic markers

in AD brain (Troncoso et al., 1996; Selznick et al., 1999). More recent evidence suggests

that intraneuronal and/or oligomeric Aβ might be key mediators of neurotoxicity and cell

death (Bayer and Wirths, 2010; Larson and Lesné, 2011).

Figure 1.3: Brain atrophy in AD.
A comparison of postmortem brain sec-
tions from an AD patient (left) and a
cognitively normal individual (right) re-
veals the severe brain atrophy accompany-
ing AD. Adapted from (Holtzman et al.,
2011b).

Synapse loss also contributes to brain atrophy in AD. Alterations in synaptic density

are believed to be a product of neurodegenerative events rather than normal aging (Scheff

et al., 2001). Decreases in synaptic number serve as early indicators of AD pathological

processes, and they occur in brain regions that later experience neuron loss. In support of

this notion, it was recently shown that individuals with mild AD have significantly fewer

synapses in the hippocampal CA1 region than both MCI patients and healthy controls

(Scheff et al., 2007). A direct correlation between the degree of synapse loss and the

severity of dementia has also been proposed (Ingelsson et al., 2004). In fact, decreased

synaptic density correlates better with cognitive decline than either neuron loss or NFTs

(Terry et al., 1991; DeKosky and Scheff, 1990; Ingelsson et al., 2004).
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1.2.4 Microglia and astrocyte activation

Activated microglia and astrocytes associate with neuritic but not diffuse amyloid

deposits in AD brain (Fig. 1.4) (Pike et al., 1995a; Itagaki et al., 1989). Studies using

transgenic AD mouse models demonstrated that microglia are attracted to and readily

interact with new amyloid deposits (Meyer-Luehmann et al., 2008; Koenigsknecht-Talboo

et al., 2008). In vitro experiments suggested that such interactions with Aβ promote

a proinflammatory profile (Lue et al., 2001; Walker et al., 2001; Colton, 2009). Further

in vitro work involving microglia cultured on AD brain sections revealed the ability of

these cells to remove amyloid (Bard et al., 2000). However, the capacity of microglia to

effectively degrade Aβ has been questioned (Paresce et al., 1997; Majumdar et al., 2007).

Figure 1.4: Gliosis in AD.
Double-labeling of AD brain sections
reveals activated astrocytes (green,
anti-GFAP antibody) surrounding
amyloid plaques (red, anti-Aβ anti-
body). Adapted from (Verkhratsky
et al., 2010).

Recent experiments showed that plaque-associated astrocytes endocytose and degrade

Aβ (Nagele et al., 2003; Wyss-Coray et al., 2003). Aβ disrupts astrocytic calcium home-

ostasis, resulting in increased expression of glial fibrillary acidic protein (GFAP), a marker

for astrocyte activation and neurodegeneration (Abramov et al., 2004; Chow et al., 2010).

Astrocytes exposed to Aβ oligomers were also revealed to contribute to neuron death

(Abdul et al., 2009).

1.3 The amyloid precursor protein

The similarities between AD and Down Syndrome (DS) brain pathology spurred ge-

netic studies that eventually linked an FAD mutation to the DS region of chromosome 21

(St George-Hyslop et al., 1987; Tanzi et al., 1987). Isolation of the defective gene resulted

in the discovery of APP, a single transmembrane glycoprotein with its carboxy-terminus

oriented toward the cytosol (Kang et al., 1987; Dyrks et al., 1988).

APP is a member of an evolutionarily conserved gene family with two mammalian

homologs, amyloid precursor-like proteins (APLP) 1 and 2 (Wasco et al., 1992, 1993).
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Figure 1.5: APP processing. In non-amyloidogenic processing (left), APP is se-
quentially cleaved by α-secretase and γ-secretase to release the p3 fragment. Amyloido-
genic processing (right) initiates with BACE1 cleavage of APP. Subsequent cleavage by
γ-secretase releases the Aβ peptide. Adapted from (Thathiah and De Strooper, 2011).

These proteins contain highly similar sequences in their ectodomains and intracellular

carboxy-termini, but the transmembrane region comprising the Aβ peptide is unique to

APP (Bayer et al., 1999). Although its primarily physiological function remains unclear,

APP has been implicated in a variety of processes, such as intracellular signaling, synapse

adhesion, trophic support, axon remodeling and and apoptosis (Zheng and Koo, 2011).

Interestingly, knockout (KO) experiments suggested there is some functional redundancy

between APP and APLP1/2. APP KO mice are viable and fertile, although lower body

weight, increased gliosis, reduced locomotor activity and cognitive impairment have been

reported (Zheng et al., 1995; Dawson et al., 1999).

APP is ubiquitously expressed. There are three major APP isoforms resulting from

alternative splicing of its 18 exon gene: APP695, APP751 and APP770 (Kang et al.,

11



Chapter 1. Introduction

1987; Kitaguchi et al., 1988; Tanzi et al., 1988; Yoshikai et al., 1990). APP751/770 are

the main transcripts found in non-neuronal tissue (Kitaguchi et al., 1988). APP695 is the

most abundant isoform in the brain, where its expression is primarily limited to neurons

(Sola et al., 1993). Brain region-specific variation in APP695 expression occurs in both

mouse and human, with the highest transcript levels found in the cortex, hippocampus

and cerebellum (Sola et al., 1993)

Intracellularly, APP is found within the perikarya, dendrites and axons of neurons.

Trafficking of APP to presynaptic compartments involves anterograde fast axonal trans-

port (Koo et al., 1990). After synthesis in the endoplasmic reticulum (ER), APP under-

goes a variety of posttranslational modifications prior to reaching the plasma membrane.

Glycosylation occurs as APP transits from the ER into the Golgi, and this processes

regulates its maturation and secretory trafficking (Weidemann et al., 1989; Tomita et al.,

1998). Most APP is retained in the Golgi network under basal conditions. However,

a small percentage of APP is transported to the plasma membrane where it is rapidly

internalized if proteolytic processing does not occur (Thinakaran and Koo, 2008). Endo-

cytosed APP is trafficked into endosomes where it is either recycled to the cell surface

or undergoes lysosomal degradation (Haass et al., 1992b). Furthermore, phosphorylation

of APP on its cytoplasmic domain can influence its trafficking, interaction with binding

partners and proteolytic processing (Suzuki and Nakaya, 2008).

1.3.1 Non-amyloidogenic processing of the amyloid precursor

protein

APP is processed via two major pathways that utilize different enzymes and result

in distinct cleavage products. The non-amyloidogenic pathway precludes the formation

of Aβ due to constitutive α-secretase-mediated cleavage in the middle of the Aβ domain

(Fig. 1.5, left) (Esch et al., 1990; Sisodia et al., 1990). It was initially proposed that

a zinc-dependent, transmembrane protease served as α-secretase (Roberts et al., 1994).

Three members of the a disintegrin and metalloproteinase (ADAM) family were later

found to possess α-secretase activity: ADAM-10, ADAM-17, ADAM-9 (Buxbaum et al.,

1998; Koike et al., 1999; Lammich et al., 1999). More recent evidence, though, suggests

that ADAM-10 serves as the primary α-secretase in neurons (Kuhn et al., 2010).

Alpha-cleavage of APP occurs mainly at the plasma membrane. It releases a soluble

α-APP fragment (sAPPα) into the lumen/extracellular space and creates a membrane-

bound, 83-residue C-terminal fragment (C83) (Sisodia, 1992). Subsequent intramembra-

nous cleavage of C83 by γ-secretase liberates a soluble, 3 kilodalton (kDa) fragment (p3)
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and the APP intracellular domain (AICD) (Zheng and Koo, 2011). The p3 fragment is

rapidly degraded, while the AICD may act as a transcriptional regulator (Haass et al.,

1993; Cao and Südhof, 2001; Gu et al., 2001).

1.3.2 Amyloidogenic processing of the amyloid precursor pro-

tein

Recent evidence suggests that the amyloidogenic processing of APP primarily occurs

in the endocytic pathway (Thinakaran and Koo, 2008). β-secretase initiates the sequence

of amyloidogenic cleavage events (Fig. 1.5, right). Cleavage of APP at the β-site generates

a soluble amino-terminal fragment (sAPPβ) and a membrane-associated, 99-residue C-

terminal fragment (C99). γ-secretase then performs a stepwise, intramembrane cleavage

of the C99 fragment, thereby liberating Aβ and the AICD. Aβ peptides range from 37 to

43 amino acids in length. However, under physiological conditions, the majority of Aβ

produced is 40 amino acids long (Aβ1−40). The 42 amino acid variant (Aβ1−42) normally

only comprises a minor fraction of the total Aβ (Haass et al., 1992b; Citron et al., 1995;

Zhang et al., 2011).

The β-site cleaving enzyme 1 (BACE1) was identified as the enzyme responsible for

APP β-cleavage in 1999 (Hussain et al., 1999; Sinha et al., 1999; Vassar et al., 1999).

BACE1 is a type 1 membrane-bound aspartyl protease with its active site facing the

lumen. It is capable of cleaving APP at two positions: the aspartate at position 1 of

the Aβ sequence or the glutamate at position 11 (Sinha et al., 1999; Vassar et al., 1999).

Other BACE1 substrates include neuregulin 1 and voltage-gated sodium channels (Kim

et al., 2005; Wong et al., 2005; Hu et al., 2006).

BACE1 is found in a variety of tissues, but it is predominantly expressed in neurons

(Sinha et al., 1999; Vassar et al., 1999). Intracellularly, BACE1 mainly localizes to the

trans-Golgi network and endosomes (Vassar et al., 1999; Capell et al., 2000; Lin et al.,

2000). However, BACE1 is also trafficked between the Golgi and the plasma membrane,

where it is enriched in lipid rafts (Huse et al., 2000; Riddell et al., 2001; Walter et al.,

2001) From the plasma membrane, BACE1 is internalized and sorted into endosomes

or recycled to the trans-Golgi network (Walter et al., 2001). The acidic environment of

early endosomes favors the β-cleavage of APP and production of Aβ since BACE1 func-

tions optimally at a low pH (Vassar et al., 1999; He et al., 2005; Wahle et al., 2005).

This phenomenon explains the accumulation of C99 fragments in endosomes when en-

dosomal/lysosomal proteolysis is inhibited (Golde et al., 1992; Haass et al., 1992a). In

fact, BACE1 serves as the primary β-secretase and is the rate-limiting enzyme in Aβ pro-
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duction. Genetic KO of BACE1 in primary neuronal cultures or in AD transgenic mice

effectively prevents Aβ generation (Cai et al., 2001; Luo et al., 2003; Ohno et al., 2007).

There are currently four known components of γ-secretase: presenilin (PS1 or PS2),

nicastrin, anterior pharynx defective 1 (APH1) and presenilin enhancer 2 (PEN-2). These

proteins assemble into the γ-secretase complex while cycling through the ER/Golgi (Ed-

bauer et al., 2003; Kimberly et al., 2003; Takasugi et al., 2003; De Strooper and Annaert,

2010). Once mature, γ-secretase is primarily found at the plasma membrane and in the

endosomal/lysosomal system (De Strooper and Annaert, 2010). Although PS, nicastrin,

APH1 and PEN-2 are all required for γ-secretase activity, PS contains the catalytic active

site needed for γ-cleavage of APP (Esler et al., 2000; Li et al., 2000; Edbauer et al., 2003;

Kimberly et al., 2003; Takasugi et al., 2003). In addition to APP, several other γ-secretase

substrates are known, including Notch, cadherins, CD44 and neuregulin (De Strooper and

Annaert, 2010).

Although Aβ was first recognized for its pathogenic role in AD, in vitro studies even-

tually established it as a normal metabolic product (Haass et al., 1992b; Shoji et al.,

1992). The physiological function of Aβ, however, remains largely unknown. Aβ has been

observed to modulate synaptic function in a concentration-dependent manner. Admin-

istration of low picomolar amounts of Aβ1−42 enhances long-term potentiation (LTP) in

hippocampal slice cultures, while a higher nanomolar dose of Aβ1−42 impairs LTP. Ac-

cordingly, infusion of picomolar concentrations of Aβ1−42 into the mouse hippocampus

facilitated learning in the Morris water maze and contextual fear conditioning paradigms

(Puzzo et al., 2008). Later in vivo work in mice demonstrated that Aβ levels in brain

interstitial fluid vary proportionally with neuronal activity, both during the natural sleep-

wake cycle and when the perforant pathway is directly stimulated (Cirrito et al., 2005;

Kang et al., 2009). Taken together, these data suggest an important function for Aβ in

normal cognitive processes.

1.4 Genetics

Most AD cases occur after the age of 65 and are classified as late-onset AD (LOAD).

Although the precise cause of LOAD is unknown, genetics are believed to account for

over 60% of LOAD susceptibility (Gatz et al., 2006). The strongest genetic risk factor

for LOAD is the ε4 allele of apolipoprotein E (ApoE). ApoE comes in three variants (ε2,

ε3, ε4) and serves as a major lipoprotein carrier within the CNS. Linkage analysis studies

initially revealed associations between markers on chromosome 19 and LOAD (Pericak-

Vance et al., 1991). Later work identified ApoE on this chromosome and highlighted its
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abilities to bind Aβ (Strittmatter et al., 1993). The Apoε4 variant was found to raise the

risk for developing LOAD (Corder et al., 1993), with heterozygous Apoε4 carriers being

three times more likely to develop AD than non-carriers (Farrer et al., 1997). In contrast,

Apoε2 is protective against LOAD (Chartier-Harlin et al., 1994).

Aside from ApoE4, recent genome-wide association studies have described gene vari-

ants that increase the risk of developing AD by a much smaller extent. These gene prod-

ucts are affiliated with processes as diverse as immune system function (complement recep-

tor 1, CR1), endocytosis/cell membrane dynamics (phosphatidylinositol-binding clathrin

assembly protein, PICALM) and lipid processing (clusterin, CLU) (Harold et al., 2009;

Lambert et al., 2009; Hollingworth et al., 2011; Naj et al., 2011).

Figure 1.6: APP
mutations in AD.
A diagram of some of
the APP mutations
associated with FAD.
Mutations near the
β-secretase cleavage
site increase overall
Aβ production, while
mutations near the
α-secretase site inhibit
α-secretase cleavage
and/or increase Aβ
aggregation. Increased
production of Aβx−42

or elevation of the
Aβx−42/Aβx−40 ratio
results from mutations
near the γ-secretase
cleavage site. Adapted
from (Van Dam and De
Deyn, 2006).

Early-onset AD (EOAD) manifests before the age of 65 and accounts for 5-10% of

all AD diagnoses. Approximately half of the individuals suffering from EOAD have at
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least one affected first-degree relative. Autosomal-dominant inheritance of AD, referred

to as familial AD (FAD), comprises roughly 10% of the remaining EOAD cases (Campion

et al., 1999). All instances of FAD identified thus far are linked to mutations in proteins

involved in the generation of Aβ (see Section 1.3.2). Genetic analysis of families afflicted

with FAD found associations with markers on chromosomes 21, 14 and 1 (Goate et al.,

1989; Schellenberg et al., 1992; Levy-Lahad et al., 1995b). The point mutations on these

chromosomes were later mapped onto the APP, PS1 and PS2 genes, respectively (Goate

et al., 1991; Levy-Lahad et al., 1995a; Rogaev et al., 1995; Sherrington et al., 1995).

To date, 32 FAD-associated mutations have been identified in the APP gene (Fig.1.6)

(Cruts and Brouwers, 1999). Most APP mutations occur in proximity to secretase cleav-

age sites (see Section 1.3.2), thereby affecting the absolute amounts or relative proportions

of Aβ isoforms produced. The first FAD-linked APP missense mutation was discovered

in a British kindred, subsequently earning it the moniker the “London”mutation (Goate

et al., 1991). This mutation (APPV717I) alters γ-secretase cleavage and increases the ra-

tio of Aβx−42 to Aβx−40 without impacting total Aβ production (Suzuki et al., 1994a). The

Florida mutation (APP1716V) elevates Aβx−42 levels in a similar manner. APP mutations

near the β-secretase cleavage site, such as the Swedish mutation (APPK670N/M671L),

produce greater overall Aβ levels by augmenting liberation of the Aβ N-terminus (Citron

et al., 1992; Mullan et al., 1992; Cai et al., 1993). Alternatively, mutations near the cen-

tral portion of the Aβ sequence, like the Flemish (APPA692G) and Arctic (APPE693G)

mutations, can have several consequences: they can impair the APP cleavage events

that preclude Aβ formation and/or alter Aβ aggregation properties, thereby enhancing

oligomer/protofibril generation (see Sections 1.3.1 and 1.5.1 ) (Hendriks et al., 1992; Haass

et al., 1994; Kamino et al., 1992; Stenh et al., 2002).

Presenilin mutations account for most FAD cases (Cruts and Van Broeckhoven, 1998).

Presently, 182 PS1 and 13 PS2 mutations have been identified (Cruts and Brouwers,

1999). PS1 and PS2 mutations usually occur as missense mutations in exon 8, where

residues are conserved between the two proteins (Perez-Tur et al., 1996; Crook et al.,

1997). The primary result of these mutations is an increased ratio of Aβx−42 to Aβx−40

(Citron et al., 1997). This change is achieved by either raising Aβx−42 production, lowering

Aβx−40 production or a combination of both (Scheuner et al., 1996; Kumar-Singh et al.,

2000).
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1.5 The amyloid hypothesis

The amyloid hypothesis has been an important tenet guiding AD research for over

20 years. It states that the deposition of Aβ is the causative event leading to the NFTs,

neuron loss, vascular damage and cognitive deficits associated with AD (Hardy and Allsop,

1991). Various observations support this theory. For example, duplication or mutations in

APP and PS1, two proteins responsible for the production of Aβ, alters Aβ levels, thereby

leading to FAD (Rovelet-Lecrux et al., 2006; Bertram et al., 2010). Transgenic mouse

models that express FAD-linked mutations replicate multiple aspects of AD pathology,

such as gliosis, age-dependent plaque deposition and cognitive deficits (Duyckaerts et al.,

2008). Furthermore, DS patients with a triplication of the APP gene locus on chromosome

21 develop amyloid plaques and NFTs characteristic of AD brain (Wisniewski et al., 1985).

Additionally, Apoε4, the major genetic risk factor for LOAD, is linked with increased

deposition and reduced clearance of Aβ (Strittmatter et al., 1993; Kim et al., 2009).

Mutations in tau, on the other hand, cause tauopathies like frontotemporal dementia

rather than AD (Hutton et al., 1998; Spillantini et al., 1998). This suggests that NFTs

are a consequence of Aβ aggregation and not responsible for initiating AD pathological

cascades.

Several of the major flaws in the amyloid hypothesis were highlighted by autopsy

studies of AD patients and healthy controls. There is a poor link between the degree of

amyloid deposition and both the duration of illness and the cognitive status of people

with AD (Arnold et al., 1991; Arriagada et al., 1992). Cognitively normal individuals can

also possess massive plaque pathology, despite never showing signs of dementia during

life (Snowdon, 2003). Although some patients involved in the clinical trial of the anti-Aβ

active vaccine AN1792 had massively reduced cortical plaque burden, cognitive testing

revealed no long-term improvements in mental status (Holmes et al., 2008). As a result

of these and other observations, revisions to the amyloid hypothesis have been proposed.

1.5.1 Soluble amyloid hypothesis

The formation of insoluble, plaque-forming amyloid fibrils from soluble, 4 kDa Aβ

monomers is admittedly complex. Monomeric Aβ has been shown to transition through a

variety of intermediate aggregation states before reaching fibrillar form, including dimers,

trimers and higher-order aggregates larger than 100 kDa (Fig. 1.7) (Benilova et al.,

2012). Broadly speaking, these prefibrillar aggregates are classified as oligomers: soluble

Aβ assemblies that do not precipitate from solution following high-speed centrifugation

(Haass and Selkoe, 2007).
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Figure 1.7: A schematic of Aβ aggregation. Aβ monomers slowly accumulate to
form oligomers during the “lag phase”(dashed line). Once assembled, oligomeric nuclei
promote protofibril formation in the “elongation phase”(solid line). Protofibrils then
aggregate to create mature amyloid fibrils. Adapted from (Kumar et al., 2011).

Considerable experimental evidence emphasizes the contribution of soluble/oligomeric

Aβ to AD pathogenesis. Sodium dodecyl sulfate (SDS)-stable Aβ dimers were isolated

during some of the earliest analyses of amyloid plaques (Masters et al., 1985b; McLean

et al., 1999). Furthermore, levels of soluble Aβ were found to correlate strongly with

synaptic loss and disease severity in AD patients (Lue et al., 1999; McLean et al., 1999).

Studies utilizing AD model systems also lend support to a pathogenic role for soluble Aβ.

Several transgenic AD mouse lines display deficits in cognition or altered synaptic struc-

ture prior to the formation of Aβ plaques (Holcomb et al., 1998; Hsia et al., 1999; Mucke

et al., 2000). In addition, SDS-stable dimers derived from the microsomes of APPV714E

transfected cells were shown to block LTP in hippocampal slice cultures (Walsh et al.,

2002). These findings subsequently prompted a reappraisal of the amyloid hypothesis to

account for soluble Aβ species in AD neurodegenerative processes (Hardy and Selkoe,

2002).

Recent work has further clarified the potential pathophysiological effects of soluble Aβ.

Examination of the plaque-proximal neuropil in AD transgenic mice using array tomog-

raphy revealed that local plaque toxicity might result from oligomers (Koffie et al., 2009).

In vitro, human-derived Aβ dimers were shown to damage the neuronal cytoskeleton in

a tau-dependent manner (Jin et al., 2011). Ultimately, the various effects of soluble Aβ

on neuronal networks may help to explain the deficits present in AD (Palop and Mucke,

2010).
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1.5.2 Intraneuronal amyloid hypothesis

Intraneuronal Aβ was reported in some of the earliest immunohistochemical studies

of AD brain. Aβ was found in close association with tangle-bearing neurons (Masters

et al., 1985a; Grundke-Iqbal et al., 1989). However, the antibodies used to detect this

immunoreactivity cross-reacted with tau or lipofuscin, thus calling into question the orig-

inal observations (Gouras et al., 2010). Subsequent development of C-terminal specific

antibodies enabled Aβx−40 and Aβx−42 to be unambiguously distinguished from APP and

its other cleavage products (Iwatsubo et al., 1994). Later work implementing Aβ-specific

antibodies confirmed the presence of intraneuronal Aβ in AD brain. Using laser-capture

microdissection combined with ELISA, an increased Aβx−42/Aβx−40 ratio was observed in

the CA1 pyramidal neurons and Purkinje neurons of AD patients relative to controls (Aoki

et al., 2008; Hashimoto et al., 2010). Another biochemical study employed a sequential

extraction protocol to enrich Aβ from different cellular compartments of AD cortical neu-

rons. It was then demonstrated that levels of intracellular/membrane-associated Aβx−42

corresponded best with dementia severity prior to death (Steinerman et al., 2008). Im-

munohistochemistry identified prominent intraneuronal Aβ in brain regions and cell types

susceptible to AD pathology before the development of extensive neuritic plaques or PHFs

(Gouras et al., 2000; Cataldo et al., 2004; Fernández-Vizarra et al., 2004). Decreased in-

traneuronal Aβ equated with increased plaque pathology, suggesting a role in extracellular

plaque development (Gouras et al., 2000; Cataldo et al., 2004; Fernández-Vizarra et al.,

2004). An intracellular origin for amyloid plaques was further substantiated by recent

in vitro studies. Cell culture experiments revealed that uptake of extracellular Aβ into

the endosomal/lysosomal system is sufficient to promote Aβ aggregation and the release

of seeds capable of inducing additional Aβ fibrillization (Hu et al., 2009; Friedrich et al.,

2010).

In vitro and in vivo model systems have further elucidated the contribution of intra-

neuronal Aβ to AD. Studies using neuronally-differentiated NT2 cells (NT2N) confirmed

the presence of intracellular Aβ in vitro. NT2N cells were shown to constitutively produce

intracellular Aβ and secrete greater amounts of Aβ extracellularly as the cultures aged

(Wertkin et al., 1993; Turner et al., 1996). The majority of this intracellular Aβ consisted

of a pool of insoluble Aβ1−42 that accumulated in a time-dependent manner (Skovronsky

et al., 1998). Experiments employing primary neuronal cultures have shown that intra-

neuronal Aβ localizes to endosomes, lysosomes and multivesicular bodies (MVBs), regions

where oligomerization can occur (Runz et al., 2002; Takahashi et al., 2004; Almeida et al.,

2006).

The presence of intraneuronal Aβ in these compartments can lead to a variety of con-
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Figure 1.8: A diagram il-
lustrating the intraneuronal
Aβ hypothesis. Taken from
(Wirths et al., 2004).

sequences. Accumulation of Aβ in neuronal MVBs caused abnormal neuronal processes,

impaired MVB sorting and deficits in the ubiquitin/proteasome system in Tg2576 mice

(Takahashi et al., 2002; Almeida et al., 2006). Additionally, exogenously applied Aβ was

able to insert into endosomal/lysosomal membranes and cause lysosomal leakage in both

neuronal and non-neuronal cells, potentially contributing to cell death (Ditaranto et al.,

2001; Liu et al., 2010). In line with this, neuron loss in a number of AD mouse mod-

els occurs in regions with prominent intraneuronal Aβ accumulation (Casas et al., 2004;

Christensen et al., 2008, 2010; Jawhar et al., 2012).

Intraneuronal Aβ can potentially originate from two sources: intracellular processing of

APP and retention of Aβ or reuptake of secreted Aβ from the extracellular space. As men-

tioned earlier, Aβ is primarily generated in the endocytic pathway (Thinakaran and Koo,

2008). Theoretically, the compact space and acidic environment of endosomes/lysosomes

could promote Aβ aggregation and cause it to remain intraneuronally. Conversely, it may

be necessary for Aβ to be collected from the extracellular space before intraneuronal Aβ

aggregates form. Thus far, several receptors have been proposed to mediate the reuptake

of Aβ, including ApoE receptors, nicotinic acetylcholine receptors, NMDA receptors, in-

tegrins and receptors for advanced glycation end products (RAGE) (Mohamed and Posse

de Chaves, 2011). However, which of these receptors, if any, is primarily responsible for
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intraneuronal Aβ accumulation remains to be determined.

In light of these findings, intraneuronal Aβ is considered to be a potentially key con-

tributor to the development and progression of AD pathology (Fig. 1.8)(Wirths et al.,

2004).

1.6 Amyloid beta variants

The first purification and sequencing of parenchymal amyloid deposits identified nu-

merous Aβ species. These Aβ isoforms ranged from 39-to-43 amino acids in length, and

they appeared to possess a variety N-termini in addition to the aspartate normally found

at the first position of the Aβ peptide (Masters et al., 1985a; Selkoe et al., 1986; Mori

et al., 1992; Roher et al., 1993b). Aside from truncated Aβ species, amino acid modifi-

cations such as racemization of aspartate and serine residues, isomerization of aspartate

residues, and pyroglutamate formation at the glutamate residues were also found (Shapira

et al., 1988; Roher et al., 1993a; Mori et al., 1992). More recent work has added to the

list of Aβ variants, with phosphorylated and nitrated Aβ being described (Kumar et al.,

2011; Kummer et al., 2011).

Immunohistochemical characterization of amyloid aggregates subsequently verified

these sequencing studies. Aβ1−40 was shown to be the major component of cerebral

vascular amyloid deposits (Suzuki et al., 1994b). In contrast, neuritic plaques were found

to consist mainly of Aβ1−42, a large portion of which was suggested to be pyroglutamate-

modified at position 3 (Iwatsubo et al., 1994; Saido et al., 1995). Variations in the N- and

C-terminal length of Aβ can have direct biological consequences. In vitro experiments

demonstrated that N-terminal truncation enhances Aβ aggregation relative to full-length

Aβ peptides (Pike et al., 1995b). Similarly, Aβ aggregation propensity increases with

greater C-terminal length, with Aβ1−42 and Aβ1−43 acting as highly effective seeds for

amyloid deposition (Burdick et al., 1992; Jarrett et al., 1993). Transgenic mouse studies

corroborated these findings. Expression of additional Aβ1−42 in Tg2576 mice enhanced

pathology, while expression of Aβ1−40 reduced Aβ deposition and alleviated the premature

death phenotype (McGowan et al., 2005; Kim et al., 2007). In addition, mice that over-

produce Aβ1−43 exhibit memory deficits and accelerated amyloid pathology (Saito et al.,

2011).

A recent paper by Portelius and colleagues newly emphasizes the myriad of Aβ iso-

forms found in AD brain. Using immunoprecipitation followed by mass spectrometry

(IP/MS), they analyzed cortical, cerebellar and hippocampal tissue from healthy indi-

viduals, LOAD and FAD patients. In agreement with previous observations, Aβ1−42 was
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identified as a dominant Aβ species in AD brain. Interestingly, Aβ1−42 with a pyrogluta-

mate modification at position 3 (AβpE3−42) and Aβ4−42 were also found to be prominent

isoforms (Portelius et al., 2010). Most research performed to date has focused on the

contributions of Aβ1−40 and Aβ1−42 to AD pathology. Importantly, the work of Portelius

et al. highlights how other understudied Aβ variants, such as AβpE3−42 and Aβ4−42, might

be significant contributors to the development and progression of AD.

1.7 Pyroglutamate-modified amyloid beta

N-terminally modified Aβ initially confounded some of the first attempts to purify

and sequence AD amyloid cores. Masters and colleagues reported that the majority of

Aβ peptides isolated from the amyloid plaque cores of AD and DS patients possessed a

ragged N-terminus (Masters et al., 1985a). In contrast, Selkoe et al. failed to obtain an

unambiguous protein sequence from AD plaque cores. They therefore postulated that the

Aβ amino terminus was blocked (Selkoe et al., 1986). Mori and coworkers later discovered

that pyroglutamate-modified Aβ was responsible for the earlier discrepancies in amyloid

core sequencing. By using pyroglutamate amino peptidase, they revealed that 15-20% of

the Aβ extracted from AD brain carries a pyroglutamate modification at its N-terminus

(Mori et al., 1992).

The development of AβpE3−x-specific antibodies prompted various studies examining

the involvement of AβpE3−x in AD pathology. Through immunohistological and biochemi-

cal analyses of senile plaques from AD and DS brain, Saido et al. determined that AβpE3−x

is present in amounts equal to or greater than N-terminally intact Aβ (Aβ1−x). Based on

observations made from DS brains, they also proposed that deposition of AβpE3−x precedes

that of other Aβ species (Saido et al., 1995). Despite the presence of amyloid plaques at

an early age, studies characterizing the sequential deposition of various Aβ species in DS

brain failed to detect AβpE3−x in young patients. Nevertheless, the number of AβpE3−x -

bearing plaques in older DS individuals always exceeded those positive for Aβ1−x, thereby

supporting the findings of Saido and colleagues (Lemere et al., 1996). Later biochemical

experiments revealed that levels of AβpE3−42 are greater than those of AβpE3−40 in AD and

DS brain (Russo et al., 1997; Hosoda et al., 1998). Since these findings, multiple groups

have used various methods to confirm that AβpE3−x is a major Aβ species in AD (Kuo

et al., 1997; Russo et al., 1997; Harigaya et al., 2000; Sergeant et al., 2003; Portelius et al.,

2010; Härtig et al., 2010; Sullivan et al., 2011). Intriguingly, the ability of the positron

emission tomography (PET) tracer Pittsburgh compound B (PiB) to detect extracellular

plaques correlates with the amount of AβpE3−x present in these deposits (Maeda et al.,
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2007).

AβpE3−x is also found outside of the context of AD brain. Several other species share

the human Aβ sequence and are known to develop plaques and vascular amyloid deposits

with age. For example, AβpE3−x has been observed in the brains of aged monkeys, dogs

and bears (Tekirian et al., 1998; Härtig et al., 2010). In addition, AβpE3−x accumulates

in the brains of non-demented individuals (Sergeant et al., 2003; Tabaton and Piccini,

2005; Wirths et al., 2010c). In such cases, the absolute amount of AβpE3−x appears to be

an important determinant of cognitive status. Compared to non-demented individuals,

AD patients have a higher ratio of AβpE3−42 to Aβ1−42 in water-soluble brain extracts,

and this ratio was shown to correlate with disease severity in FAD patients (Tabaton and

Piccini, 2005).

1.7.1 Generation of pyroglutamate-modified amyloid beta

In order to form AβpE, the Aβ sequence must first undergo proteolytic processing to

expose a glutamate residue at its N-terminus. For the shorter AβpE variant, AβpE11−x,

alternative BACE1 cleavage occurring in the trans-Golgi network reveals the glutamate

residue at position 11 (Huse et al., 2002). The cleavage steps required to generate AβpE3−x

are more unclear. It was initially hypothesized that AβpE3−x is derived from Aβ1−x prior to

its deposition (Saido et al., 1996). However, FAD mutations that produce increased levels

of N-terminally truncated Aβ were discovered, suggesting that the glutamate at position

3 could be liberated during amyloidogenic processing of APP (Ancolio et al., 1999; Russo

et al., 2000; Miravalle et al., 2005a; Piccini et al., 2007). Recent studies of brains from

AD patients and APP/PS1 KI mice support the hypothesis of Saido and coworkers; they

found that Aβ N-terminal truncation increases with disease progression, and formation

of AβpE3−x appears to occur at the expense of Aβ1−x (Güntert et al., 2006; Wirths et al.,

2010a). The enzymes responsible for removing the N-terminal aspartate and alanine

residues of Aβ1−x in vivo remain unidentified. Cell culture experiments revealed that

aminopeptidase A can initiate the truncation of secreted Aβ1−x by cleaving the aspartate

residue at position 1 (Sevalle et al., 2009). Alternatively, it was proposed that Cu2+-

mediated amide hydrolysis could remove the first two residues from Aβ1−x simultaneously

(Drew et al., 2010).

After their exposure, N-terminal glutamate residues were initially believed to sponta-

neously cyclize to form AβpE (Hashimoto et al., 2002). While non-catalyzed pyrogluta-

mate conversion is possible, it may take from years to decades to occur under physiological

conditions (Chelius et al., 2006; Yu et al., 2006). Injection of Aβ into wild-type (WT) rat
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brain resulted in some of the peptide undergoing conversion into AβpE in as little as one

day after administration (Shin et al., 1997). The rapidity of this process indicated that

enzymes are present in vivo that can process Aβ and catalyze the formation of AβpE. It

was later shown that glutaminyl cyclase (QC) could facilitate the generation of AβpE in

vitro (Fig. 1.9) (Schilling et al., 2004).

Figure 1.9: The generation of AβpE3−x. The first two amino acids at the N-terminus
of Aβ are removed through unknown mechanisms. This process exposes a glutamate
residue, thereby allowing glutaminyl cyclase (QC) to catalyze the dehydration reaction
needed to form pyroglutamate (pE). The altered aggregation kinetics and longer bioavail-
ability of AβpE ultimately enhance its toxicity relative to N-terminally unmodified species
of Aβ. Adapted from (Jawhar et al., 2011a).

QC is a zinc-dependent acyltransferase that converts glutamine or glutamate to py-

roglutamate via the liberation of ammonia or water, respectively (Schilling et al., 2003).

In WT mouse brain, QC expression is highest in the hypothalamus. The hippocam-

pus and cortex have moderate levels of QC, with the enzyme detected most strongly in

interneurons. Intracellularly, QC localizes to the Golgi, ER and secretory granules of

neurons. QC has been found in cultured astrocytes, but the protein was undetectable in

mouse brain astrocytes under physiological conditions (Hartlage-Rubsamen et al., 2009;

Schilling et al., 2011). Consistent with its presence in the secretory pathway, QC-catalyzed

conversion of glutamate to pyroglutamate preferentially occurs at a mildly acidic pH (pH
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6) (Schilling et al., 2004). QC can be secreted, but cell culture experiments have indicated

that the QC-mediated generation of AβpE is favored in intracellular compartments (Cynis

et al., 2008). However, secreted QC may still contribute to extracellular AβpE forma-

tion in vivo (Hartlage-Rübsamen et al., 2011a). Immunohistochemical evaluation of AD

brain disclosed that QC is found in neuronal populations that are particularly vulnerable

to degeneration, such as the Edinger-Westphal nucleus, locus coeruleus and the nucleus

basalis of Meynert. The presence of QC correlated with intraneuronal AβpE formation

and plaque deposition in these areas (Morawski et al., 2010). Suppressing QC activity

using an enzyme-specific inhibitor was found to substantially reduce AβpE formation in

a variety of experimental settings, including cell culture, Aβ-injected rat brain and AD

transgenic mice (Cynis et al., 2006; Schilling et al., 2008c,a). Taken together, these data

strongly suggest that QC is a primary enzyme responsible for AβpE generation.

1.7.2 Biochemical properties of pyroglutamate-modified amy-

loid beta

The loss of one positive charge and two negative charges, combined with the formation

of the lactam ring, greatly increases the hydrophobicity of AβpE relative to N-terminally

intact Aβ (He and Barrow, 1999). The presence of the pyroglutamate moiety also makes

AβpE uniquely resistant to proteolysis (Saido et al., 1996; Kuo et al., 1998). As a result, the

aggregation propensity and biochemical characteristics of AβpE are substantially altered.

In vitro aggregation assays have repeatedly shown that AβpE3 forms fibrillar, β-sheet

containing structures more rapidly than Aβ1−x (He and Barrow, 1999; Kuo et al., 1998;

D’Arrigo et al., 2009; Schlenzig et al., 2009). AβpE3−x also oligomerizes more quickly and

at lower concentrations than Aβ1−x (Kuo et al., 1998; Harigaya et al., 2000; Schilling et al.,

2005). When combined with N-terminally intact Aβ, AβpE3 can seed the aggregation of

the other isoforms (Schilling et al., 2006). However, AβpE3 may also delay fibrillization of

the mixture, thereby stabilizing toxic oligomeric intermediates (Kuo et al., 1998; D’Arrigo

et al., 2009; Sanders et al., 2009).

1.7.3 Toxicity of pyroglutamate-modified amyloid beta

Multiple experimental paradigms have demonstrated the pathogenicity of AβpE3. Mix-

tures of AβpE and Aβ1−42 at ratios similar to those found in AD patients were more

toxic to neuroblastoma cell lines than mixtures reflecting the Aβ composition in non-

demented brain (Piccini et al., 2005). Transgenic mouse lines designed to exclusively

produce AβpE3−42, the truncated beta-amyloid (TBA)2 and TBA2.1/2.2 mice, display
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significant intraneuronal AβpE accumulations, progressive motor deficits and neurode-

generation (Wirths et al., 2009; Alexandru et al., 2011). Targeted removal of AβpE, on

the other hand, effectively alleviates AD pathology. Reducing AβpE levels, either through

treatment with a QC inhibitor, genetic KO of QC or passive vaccination with an AβpE3−x-

specific antibody, has been shown to decrease plaque load and reverse behavioral deficits

in several different AD mouse models (Schilling et al., 2008b; Wirths et al., 2010c; Jawhar

et al., 2011b; Frost et al., 2012).

While the aforementioned studies demonstrate the harmful effects of AβpE accumula-

tion, there are contradicting reports as to whether it is more toxic than Aβ1−40/42. Russo

and colleagues found AβpE3−40/42 to be more toxic than Aβ1−40/42 in neuronal and glial

cultures and more resistant to degradation by astrocytes (Russo et al., 2002). Similarly,

oligomeric AβpE induced apoptosis and necrosis in human neuroblastoma cell lines at a

greater rate than Aβ1−42 (Acero et al., 2009). In contrast, pre-aggregated AβpE3−42 dis-

played toxicity equivalent to Aβ1−42 when applied to hippocampal neuronal cultures of

varying ages (Tekirian et al., 1999). A study employing viral vectors to drive Aβ produc-

tion in primary cortical neurons provided comparable results; the authors failed to detect

differences in cell viability between neurons that secreted Aβ1−x; Aβ3−x or AβpE3−x (Shi-

rotani et al., 2002). In vivo experiments were also inconclusive. Administering soluble

oligomers comprised of AβpE3−42 or Aβ1−42 to WT mice via intracerebroventricular in-

jection induced analogous deficits in the Y-maze and Morris water maze (Youssef et al.,

2008). Differences in Aβ preparations, treatment paradigms and modes of inducing Aβ

production may partially explain these discrepant results.

1.8 Amyloid beta 4-42

Relatively little is known about the role of Aβ4−42 in AD pathology. The enzyme re-

sponsible for cleaving Aβ1−42 to expose the N-terminal phenylalanine of Aβ4−42 is uniden-

tified. However, Aβ degrading enzymes, such as neprilysin, might be involved (Carson

and Turner, 2002). Sedimentation studies indicate that Aβ4−42 aggregates more quickly

than Aβ variants with longer N-termini (Pike et al., 1995b). As a result, Aβ4−42 could be

one of the earliest and most prominent Aβ species deposited in AD brain. In line with

this notion, sequencing of amyloid plaque cores found that 64% of the isolated Aβ had a

phenylalanine at its N-terminus (Masters et al., 1985a). Later work suggested that Aβ4−42

is less abundant in AD brain (Miller et al., 1993; Naslund et al., 1994). Although the pre-

cise amounts of Aβ4−42 are still unclear, a recent IP/MS experiment supports the initial

findings of Masters et al. by identifying Aβ4−42 as a major Aβ species in AD patients.
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(Portelius et al., 2010). Additionally, Aβ4−42 was found to be a component of cotton wool

plaques in FAD patients with the V261I PS1 mutation (Miravalle et al., 2005b). Other

pathological studies have discovered Aβ4−42 in amyloid deposits from vascular demen-

tia and familial Danish dementia patients (Tomidokoro et al., 2005; Lewis et al., 2006).

Based on these observations, Aβ4−42 may contribute to the development of multiple CNS

diseases.

1.9 Transgenic mouse models of Alzheimer’s disease

Animal models that faithfully recapitulate the molecular origin, lesions and symptoms

of a human illness are rare in disease-based research. To date, there is no AD model that

accurately replicates all aspects of AD pathology. Some species, such as dogs, cats and

nonhuman primates, spontaneously develop age-related cognitive decline and some of the

histopathological hallmarks of AD. However, cost, availability, long life-span and ethical

considerations greatly restrict their experimental use. As a result, transgenically modified

animal models have become critical tools in the study of AD. Several non-mammalian

organisms, such as the fruit fly Drosophila melanogaster and the nematode Caenorhabditis

elegans, have been transgenically manipulated in order to examine particular aspects

of AD pathology. Although these animals offer powerful molecular and genetic tools,

their anatomy and physiology are vastly different from that of humans. Consequently,

most transgenic AD models have been created in a less evolutionarily-distant mammalian

species, the laboratory mouse Mus musculus.

Rodents do not spontaneously develop AD histopathology as they age. The discovery

of FAD-linked mutations in the APP and PS genes afforded the opportunity to study AD

pathology in mice carrying transgenes with these mutations. The first mouse models to

robustly replicate some of the histopathological hallmarks of AD carried APP transgenes

with a single FAD mutation. The PDAPP mouse model expresses a human APP (hAPP)

minigene bearing the V717F Indiana mutation under the control of the platelet-derived

growth factor promoter. Extracellular amyloid plaques, composed primarily of Aβx−42,

first appear in PDAPP mice between the ages of 6 and 9 months. Amyloid deposition

increases with age and is accompanied by progressive synaptic loss, phospho-tau-positive

dystrophic neurites, microgliosis and astrocytosis (Games et al., 1995; Rockenstein et al.,

1995; Masliah et al., 2001). In addition, PDAPP mice experience age-dependent deficits

in spatial reference memory and object recognition, both of which occur in the absence of

neuron loss (Irizarry et al., 1997; Chen et al., 2000; Dodart et al., 2000).

One of the most widely used transgenic mouse models, the Tg2576 mouse, also contains
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a single APP mutation. Tg2576 mice overexpress the hAPP 695 isoform containing the

Swedish mutation K670N/M671L under the control of the hamster prion promoter. They

develop sparse plaque pathology at the age of approximately 12 months. Like the PDAPP

model, plaque deposition increases with age and occurs with astrocytosis, microgliosis and

dystrophic neurites. Interestingly, Tg2576 mice exhibit deficits in working memory and

spatial reference memory prior to significant plaque formation (Hsiao et al., 1996; Holcomb

et al., 1998).

Efforts to create more aggressive AD models resulted in transgenic mice that com-

bine multiple APP mutations or APP and PS1 mutations. A series of mouse lines was

developed carrying transgenes containing hAPP751 with the Swedish and London mu-

tations (K670M/N671L + V717I) under the control of the murine Thy1.2 promoter. It

was discovered that the age at which plaques formed in the different lines depended on

the levels of Aβ1−42 produced (Rockenstein et al., 2001). In agreement with this finding,

TgCRND8 mice, a model with Aβ1−42 levels comparable to those found in the brains

of sporadic AD patients, develop early and robust pathology. TgCRND8 mice express

hAPP695 with the Swedish and Indiana mutations (K670N/M671L + V717F) under a

hamster prion promoter. Plaque pathology in these mice is observable from 3 months

of age and occurs in parallel with spatial reference memory deficits. Co-expression of

PS1 containing the M146L and L286V mutations and Swedish/Indian hAPP produced

“double”transgenic TgCRND8 mice in which plaques develop from the age of one month

(Chishti et al., 2001). Other APP/PS double transgenic mouse models demonstrate sim-

ilar enhancements of pathology relative to single transgenic APP mice. (Holcomb et al.,

1998; Duyckaerts et al., 2008).

Although levels of Aβx−42 are elevated in single transgenic mice expressing mutant

PS, no plaque pathology is observed in these models. This likely results from differences

in the solubility of human and murine Aβ (Jankowsky et al., 2007). It should be noted,

however, that expression of mutated PS alone does result in some impairments. Various

PS mouse models were found to have mild behavioral deficits, altered axonal transport

and perturbed calcium homeostasis in the ER (Duyckaerts et al., 2008).

While mouse models can recreate many aspects of AD pathology, they fail to repro-

duce two key features of the disease: widespread neuron loss and NFT formation. Region-

specific neuron loss is most robustly observed in mice harboring both APP and PS1 muta-

tions. Mouse models with documented neuron loss include the APP751 Swedish/London

x PS1 M233T/L235P knockin (KI), APP751 Swedish/London x PS1 M146L, and mice

carrying five FAD mutations (5XFAD), among others (Casas et al., 2004; Schmitz et al.,

2004; Oakley et al., 2006). To produce NFTs, transgenes containing FAD mutations and
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tau mutations linked to frontotemporal dementia have been combined. The first APP/tau

mouse was the result of crossing Tg2576 and P301 tau mice. Tau pathology was enhanced

in the APP/tau mice relative to tau P301 single transgenics (Lewis et al., 2001). Later,

the triple-transgenic 3xTg mouse was generated by coinjecting separate Thy1.2-driven

transgenes containing APP695 Swedish and tau-P301 into the pronuclei of single-celled

PS1 M146V KI embryos. 3xTg mice develop Aβ plaques at around 12 months of age and

NFT-like pathology when they are between 12 and 15 months old (Oddo et al., 2003).

Despite representing a genetic state not present in human patients, combined FAD/tau

transgenic mouse models have provided important evidence that Aβ drives tau pathology

in AD (Lewis et al., 2001; Oddo et al., 2004).

1.9.1 5XFAD mouse model

The 5XFAD mouse is a double transgenic APP/PS1 mouse model. It harbors five FAD

mutations in order to accelerate plaque development and produce high levels of Aβ. The

model was created by co-pronuclear injection of two transgenes, hAPP695 containing the

Swedish, Florida and London mutations, and PS1 containing the M146L and L286V mu-

tations (Fig. 1.10). Both transgenes are under the control of the Thy1 promoter. These

transgenes successfully cointegrated, as demonstrated by their stable germline transmis-

sion and coinheritance over multiple generations. As a result, 5XFAD mice breed as if

they are a single transgenic model (Oakley et al., 2006). Since 5XFAD mice were orig-

inally generated as a C57/B6xSJL hybrid strain, they were recently backcrossed onto a

pure C57BL/6J background to facilitate mating and comparison with other AD mouse

models (Jawhar et al., 2012).

The particular mutations found in 5XFAD mice drive the overproduction of Aβx−42,

making it an amyloid-predominant model. The Swedish mutation elevates levels of total

Aβ, while the Florida, London, M146L and L286V mutations promote the formation of

Aβx−42 specifically. As a result, Thioflavin S positive plaques are present in the brains

of 5XFAD mice beginning from the age of 2 months. Microgliosis and astrocytosis occur

concomitantly with plaque deposition, and these pathologies massively increase with age

(Oakley et al., 2006). Extracellular plaques were also identified in the spinal cords of

3-month-old 5XFAD mice (Jawhar et al., 2012). Young female 5XFAD mice initially have

higher Aβx−42 levels than age-matched males, suggesting a gender-dependent difference in

disease progression. Although this trend seems to disappear in older animals, restraint-

stress experiments increased plaque deposition only in female 5XFAD mice (Oakley et al.,

2006; Devi and Ohno, 2010b).
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Figure 1.10: The 5XFAD transgenes. A schematic diagram of the Thy1-APP and
the Thy1-PS1 transgenes used to create the 5XFAD mouse. Grey rectangles represent
the coding regions of APP and PS1. FAD mutations in the transgenes are indicated by
arrowheads. Sw, Swedish mutation; Lon, London mutation; Fl, Florida mutation. Taken
from (Oakley et al., 2006).

In addition to extracellular amyloid plaques, 5XFAD mice accumulate intraneuronal

Aβ in cortical layer V, the subiculum and the spinal cord. In the cortex, intraneuronal

Aβ puncta first appear at 1.5 months of age, prior to plaque deposition. The presence of

intraneuronal Aβ in these regions correlates with neuron loss and was suggested to spur

plaque deposition and axonal spheroid formation (Oakley et al., 2006; Jawhar et al., 2012;

Moon et al., 2012). Stereological cell counts performed on 12-month-old 5XFAD mice have

confirmed an approximately 40% decrease in neuronal numbers in cortical layer V. No such

neuron loss was observed in the hippocampal CA1 region, which lacks intraneuronal Aβ

(Jawhar et al., 2012).

Synaptic alterations also occur in the 5XFAD model. Synaptic markers undergo an

age-dependent decrease beginning in 4-month-old mice (Oakley et al., 2006). Prior to

plaque formation and overt synaptic loss, swollen presynaptic terminals and axonal pro-

cesses develop intracellular BACE1 and Aβ accumulations. Local Aβ overproduction

and dystrophic changes in these structures coincide with the deposition of extracellular

amyloid plaques (Zhang et al., 2009).

Behavioral impairments manifest in 5XFAD mice at a relatively young age. The initial

description of the 5XFAD model identified working memory deficits in the Y-maze in 4-to-

5-month-old mice (Oakley et al., 2006). Similarly, a recharacterization of the model on the

C57BL/6J background revealed that 6-month-old mice display a reduced alternation rate

in the cross maze and exhibit decreased anxiety in the elevated plus maze. Additionally,

this study showed that 5XFAD mice experience a decline in motor function from the age
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of 9 months, as demonstrated in the balance beam and string suspension tasks (Jawhar

et al., 2012). Impaired performance in the conditioned taste aversion task, MWM and

contextual fear conditioning paradigm have also been documented in 5XFAD mice (Ohno

et al., 2006; Kimura and Ohno, 2009; Devi and Ohno, 2010a).

Despite the aggressive pathology that develops in the 5XFAD model, these mice still

respond to therapeutic interventions. Different passive immunization strategies have effec-

tively decreased plaque load and alleviated behavioral impairments (Wirths et al., 2010b;

Chauhan et al., 2011). Likewise, short-term treatment of 5XFAD mice with a TrkB ag-

onist restored Y-maze performance to WT levels, while long-term administration of a

protein kinase C (PKC) activator ameliorated synaptic loss, plaque pathology and cog-

nitive deficits (Hongpaisan et al., 2011; Devi et al., 2012). Oral dosage of a peroxisome

proliferator activated receptor delta (PPARδ) agonist was also shown to reduce plaque

burden and astrocyte activation in 3-month-old 5XFAD mice (Kalinin et al., 2009). Con-

versely, 3 months of ibuprofen treatment decreased levels of inflammatory markers, but

left plaque load unaffected, elevated levels of soluble Aβx−42 and impaired behavioral per-

formance (Hillmann et al., 2012). As a whole, the biochemical, histopathological and

behavioral features of the 5XFAD mouse make it a useful model for AD research.
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1.10 Project objectives

1.10.1 Project I: Generation and characterization of the TBA42

mouse model

AβpE is an abundant Aβ isoform in AD brain. It displays altered aggregation kinet-

ics, increased resistance to proteolytic degradation and marked toxicity (see Section 1.7).

Directly determining the pathological function of AβpE in vivo, though, remains challeng-

ing. Most AD mouse models generate more than one Aβ isoform, making it difficult to

examine the detrimental effects of one particular species (Duyckaerts et al., 2008). To

study the toxicity of AβpE in isolation, the TBA2 and TBA2.1/2.2 transgenic mouse lines

were created. These mice express a truncated and modified Aβ3−42 sequence fused to a

thyrotropin-releasing hormone signal peptide. The N-terminal residue of this sequence is

a glutamine rather than the glutamate normally found at the third position of the Aβ

peptide. Together, these alterations promote the QC-catalyzed formation of AβpE3−42.

Although AβpE3−42 neuronal toxicity has been successfully demonstrated in these mod-

els, the TBA2 and TBA2.1/2.2 lines have several drawbacks. The prominent cerebellar

Aβ pathology in TBA2 mice caused pronounced motor deficits and the loss of the line

(Wirths et al., 2010c). In contrast, TBA2.1 and TBA2.2 mice are viable and fertile. How-

ever, to observe a phenotype, it is necessary to create homozygous (Hom) mice or mice

heterozygous for both the TBA2.1 and TBA2.2 transgenes (Alexandru et al., 2011). This

greatly complicates breeding with other transgenic mouse models.

To overcome the weaknesses of the aforementioned TBA mouse models, we used the

same transgene to create the TBA42 mouse, a new transgenic line that accumulates

AβpE3−42. Transgene expression levels in TBA42 mice were measured via quantitative

real-time polymerase chain reaction (qPCR). We then performed a longitudinal char-

acterization of female mice at the ages of 3, 6 and 12 months. Brain and spinal cord

pathology were examined using immunohistochemistry. In addition, a battery of motor

and cognitive tasks were employed to evaluate behavioral performance.

Objectives of Project I:

• Establish a new transgenic mouse line that that generates AβpE3−42 in the heterozy-

gous state but does not possess a lethal phenotype.

• Assess Aβ/AβpE3−42 accumulation and gliosis in 3, 6 and 12-month-old mice.

• Determine if age-dependent behavioral changes occur by measuring general motor

function, working memory and anxiety.
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1.10.2 Project II: Exploring the pyroglutamate-modified amy-

loid beta seeding hypothesis using the FAD42 mouse

model

In certain AD transgenic mice, AβpE appears to contribute greatly to underlying neu-

ropathology. Reducing the levels of AβpE decreases plaque burden, lowers levels of solu-

ble and insoluble Aβ and ameliorates behavioral deficits (Schilling et al., 2008b; Wirths

et al., 2010c; Jawhar et al., 2011b; Frost et al., 2012). However, few studies have ad-

dressed whether elevating AβpE levels is sufficient to aggravate ongoing disease processes.

Previous work from our lab attempted to answer this question by overexpressing hQC in

5XFAD mice. Since QC is responsible for catalyzing the formation of AβpE, it was not

surprising that AβpE levels were increased in 5XFAD/hQC mice. Furthermore, in agree-

ment with the pathogenic role of AβpE, both plaque burden and behavioral deficits were

exacerbated relative to 5XFAD single transgenic mice. A disadvantage of this approach

was the reliance on the ectopic overexpression of hQC. As QC is an enzyme with multiple

targets, it cannot be excluded that alterations in these other substrates contributed to

the phenotype observed in 5XFAD/hQC mice.

The primary aim of this project was to investigate how additional AβpE3−42 impacts

the progression of AD pathology in the absence of QC manipulations. To accomplish this,

we crossed transgenic mice that produce AβpE3−42 (TBA42) with the 5XFAD mouse, a

model with aggressive amyloid pathology (See Section 1.9.1). We assessed the impact

of elevated AβpE3−42 by analyzing 6-month-old mice that carried both the TBA42 and

5XFAD transgenes - the so-called FAD42 mice. Comparisons were then made between

WT, TBA42, 5XFAD and FAD42 mice on the levels of behavioral phenotype, Aβ bio-

chemistry, QC-activity and cortical plaque load.

Objectives of Project II:

• Elucidate the effects of elevated AβpE3−42 on the 5XFAD behavioral phenotype using

the FAD42 mouse.

• Determine whether increased levels of AβpE3−42 impact the co-precipitation of other

Aβ variants.

• Evaluate changes in the pools of soluble and insoluble Aβ induced by additional

AβpE3−42.

• Measure possible alterations in QC activity.

• Analyze the ability of AβpE3−42 to seed plaque deposition in vivo.
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1.10.3 Project III: Generation and characterization of the TBA83

mouse model

Aβ4−42 is another dominant Aβ species in AD brain (Portelius et al., 2010). Like

AβpE3−42, generation of Aβ4−42 requires the N-terminal truncation of the Aβ1−42 peptide.

However, after liberation of its N-terminus, Aβ4−42 does not undergo further enzyme-

catalyzed modification. As a result, use of the appropriate construct would allow for the

direct expression of Aβ4−42 in transgenic mice. A major criticism of conventional AD

mouse models is their overexpression of the mutated forms of APP and PS1 seen in FAD.

Such mutations cause AD in only a minority of patients, and no case has been reported in

which there is more than one mutation. Therefore, moderate expression of an Aβ peptide

that naturally accumulates in AD brain, such as Aβ4−42, could be considered more akin

to the situation found in human AD.

Little is currently known about the toxicity of Aβ4−42. Sedimentation studies suggest

that the rapid aggregation kinetics of Aβ4−42 may greatly influence how it and other Aβ

isoforms deposit in the brain (Pike et al., 1995b). In order to elucidate the effects of

Aβ4−42 expression in vivo, we generated and characterized the TBA83 mouse model.

Objectives of Project III:

• Develop a mouse model that expresses Aβ4−42 without relying on transgenes carrying

mutated Aβ, APP, or PS1.

• Examine the neuropathology resulting from Aβ4−42 expression.

• Determine if Aβ4−42 is capable of inducing behavioral deficits in transgenic mice.
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Materials and Methods

2.1 Animals

2.1.1 Housing and general considerations

Mice were group-housed with an average of four individuals per cage and kept on a

12 hour/12 hour inverted light cycle (lights off at 8 a.m.). Free access to food and water

was provided. Handling and behavioral testing were performed during the dark phase (8

am 8 pm) under red lighting. Only female mice were used for the current studies. All

animal experiments were conducted in accordance with the German guidelines for animal

care and approved by the local legal authorities.

2.1.2 TBA42 transgenic mice

The generation of the transgenic vector expressing murine thyrotropin-releasing hormone-

Aβ (mTRH-Aβ3−42) under the control of the murine Thy1.2 regulatory sequence was de-

scribed previously (Cynis et al., 2006; Wirths et al., 2009). The glutamate at position

three of the Aβ amino acid sequence was mutated into glutamine in order to facilitate

enhanced pyroglutamate formation. The mice thus express unmodified Aβ3Q−42 (here-

after named Aβ3−42) which can be readily converted to AβpE3−42 by QC. TBA42 mice

were generated by male pronuclear injection of fertilized C57BL/6J oocytes. The result-

ing offspring were screened for transgene integration by polymerase chain reaction (PCR)

analysis. Three founder animals (TBA41, TBA42, and TBA45) were identified and subse-

quently bred to C57BL/6J mice to establish independent lines. Transgene expression was

assessed in the F1 generation of each line using quantitative real-time (qPCR). The line
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with the highest levels of transgene messenger ribonucleic acid (mRNA) was selected for

further breeding (named truncated beta-amyloid 42; TBA42). For behavioral analyses,

the following numbers of female mice were used: WT: n = 12 (3 months (mon)), n = 10

(6 mon), n = 8 (12 mon); TBA42: n = 12 (3 mon), n = 10 (6 mon), n = 9 (12 mon).

2.1.3 5XFAD transgenic mice

Generation of the 5XFAD mouse line was described previously (Oakley et al., 2006).

These mice carry an APP695 transgene with the Swedish, Florida and London muta-

tions and a PS1 transgene containing the M146L and L286V mutations. The APP and

PS1 transgenes co-segregate and are both under the control of the murine Thy1.2 regu-

latory sequence. All 5XFAD mice were backcrossed for more than 10 generations onto a

C57BL/6J genetic background.

2.1.4 FAD42 transgenic mice

FAD42 mice were generated by breeding transgene positive 5XFAD mice to transgene

positive TBA42 mice. WT and transgenic offspring were subsequently identified using

PCR. Mice were designated as FAD42 when they carried both the TBA42 and 5XFAD

transgenes. For behavioral analyses, the following numbers of 6-month-old female mice

were used: WT n = 9, 5XFAD n = 8, TBA42 n = 8, FAD42 n = 5.

2.1.5 TBA83 transgenic mice

The TBA8 transgenic vector was derived from the mutagenesis of the TBA42 trans-

genic vector (see Sections 2.1.2, 2.3.2 and 2.3.6). TBA83 mice were generated by pronu-

clear microinjection of C57BL/6J oocytes (see Section 2.3.7). The resulting offspring were

screened for transgene integration by PCR analysis. Seven founder animals were identi-

fied and subsequently bred to C57BL/6J mice to establish independent lines. Transgene

expression was assessed in the F1 generation of each line using qPCR. The line with the

highest transgene mRNA levels was selected for further breeding (named truncated beta-

amyloid 83; TBA83). For behavioral analyses, the following numbers of female mice were

used: WT: n = 12 (3-4 mon), n = 10 (6-7 mon), n = 10 (11-12 mon); TBA83 n = 7 (3-4

mon), n = 7 (6-7 mon), n = 9 (11-12 mon).
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2.1.6 Tissue preparation for biochemistry

All mice were sacrificed via carbon dioxide anesthetization followed by cervical dis-

location. Mouse cadavers were decapitated using large surgical scissors, and brains and

spinal cords were rapidly dissected on ice.

For brain isolation, an incision was first made over the dorsal midline of the skull

with a disposable surgical scalpel. The skin and tissue surrounding the skull were then

carefully removed. The skull bones were fractured using fine surgical scissors. A dorsal

incision was made along the median fissure and a lateral incision along the temporal bones.

Skull fragments were removed with fine tweezers, and the whole brain was extracted from

the skull using a small spatula. The olfactory bulb was excised from the intact brain

and discarded. Using a surgical scalpel, the brain hemispheres were separated down the

midline. The cerebellum and brainstem were removed and retained individually.

To prepare the spinal cord, an incision was made over the spinal column and down

the dorsal midline using a surgical scalpel. The skin and muscle were then removed from

around the spinal column. A lateral incision was made on each side of the spinal column

neural arch with fine surgical scissors. The dorsal bone of the spinal column was pealed

away using fine tweezers. Spinal nerves were cut with a surgical scalpel, thereby allowing

the spinal cord to be removed with a small spatula.

The right and/or left brain hemisphere and a sample of cervical/thoracic spinal cord

were immediately frozen on dry ice. All samples were stored at −80 °C until use.

2.1.7 Tissue preparation for immunohistochemistry

Drop-fixation

Mice were sacrificed, and brain and spinal cord tissue were dissected as described in

Section 2.1.6. The right and/or left hemisphere and a sample of cervical/thoracic spinal

cord were placed into embedding cassettes (Simport). Samples were fixed in a solution

of 4% formalin prepared in phosphate buffered saline (PBS) (Roth) for a minimum of 72

hours (h) prior to paraffin embedding (see Section 2.6.1).

Perfusion

Mice were deeply anesthetized with an intraperitoneal injection of a mixture of ke-

tamine (10% stock solution; Medistar) and xylazine (Xylareim, 23.3 mg/mL; Riemser)

diluted in an 0.09% isotonic saline solution (Braun). The anesthetic was administered at

a dosage of 150 mg/kg and 17 mg/kg of ketamine and xylazine, respectively. A peristaltic
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pump was equipped with tubing, and the ice-cold perfusion solutions (0.01 M PBS (Pan

Biotech); 4% (weight/volume (w/v)) paraformaldehyde (PFA; Merck) in 0.01 M PBS)

were measured into separate 100 mL graduated cylinders. A sterile needle was affixed

onto one end of the pump’s tubing, and the opposite end was inserted into the graduated

cylinder containing the PBS. The tubing was then flushed with roughly 15 mL of PBS to

remove any air present in the system. Once the mouse was no longer responsive to pain

stimuli, it was pinned by its limbs onto a foam perfusion stage. Using surgical scissors,

the abdominal wall of the mouse was opened, the diaphragm was cut and the rib cage

was split to reveal the beating heart. An incision was made in the right atrium of the

heart to allow for blood to drain from the circulatory system. The sterile needle attached

to the tubing of the peristaltic pump was inserted into the left ventricle. The mouse was

then perfused with 40 mL of ice-cold 0.01 M PBS to flush the blood from its body. This

process was monitored by observing the color change of the mouse’s liver from red to

grayish-white. Thereafter, the pump was stopped and the perfusion tubing was placed

into the graduated cylinder containing ice-cold 4% PFA. Perfusion was then continued

until 40 mL of PFA solution was administered. Twitching of the mouse’s tail indicated

optimal perfusion.

Following perfusion, the mouse was removed from the foam perfusion stage and decap-

itated. Brain and spinal cord tissue were prepared as described in Section 2.1.6. The right

brain hemisphere and cervical/thoracic spinal cord were prepared for paraffin embedding

as outlined in Section 2.6.1. The left brain hemisphere was cryoprotected by placing it in

50 mL of 30% (%w/v) sucrose solution (Roth) prepared in 0.01 M PBS. The brain tissue

was incubated in this solution overnight (ON) at 4 °C or until it sank to the bottom of

its container. The brain tissue was then removed from the sucrose solution, and excess

liquid was carefully absorbed with a lab-grade wipe. The brain tissue was subsequently

wrapped in foil and frozen on dry ice for 10-to-15 minutes (min). Once frozen solid, the

brain tissue was stored at -80 °C until use.

2.2 Behavioral analysis of mice

2.2.1 Clasping test

Clasping behavior was tested by suspending mice by their tails for 30 sec and observing

their fore- and hindpaws. Mice were scored on a scale from 0 to 3, where 0 = no clasping,

1 = forepaw clasping, 2 = forepaw and one hindpaw clasped, and 3 = all paws clasped

(Miller et al., 2008).
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2.2.2 Balance beam

A beam walking task was used to assess balance and general motor function (Arendash

et al., 2001). The balance beam consisted of a wooden dowel 1 cm in diameter and 50

cm in length elevated 44 cm above a padded surface. The beam was supported at both

ends by a column attached to a 9 x 15 cm escape platform. Each mouse underwent three,

60-second (sec) trials with a minimum of 5 min between trials. At the start of every

trial, the mouse was placed on the center of the beam facing one of the platforms. The

latency to fall off the beam or to reach one of the platforms was then recorded. If a mouse

remained on the beam for the entire trial or escaped to a platform, the maximum time

of 60 sec was awarded. Between trials, the apparatus was cleaned with 70% EtOH to

diminish odor cues. The average latency of all three trials was taken as the final score for

each mouse.

2.2.3 String suspension

Motor coordination and grip strength were evaluated using the string suspension task.

The testing apparatus was comprised of a 50 cm cotton string, 2 mm in diameter, tied

between two wooden support beams at a height of 35 cm. Padding was placed immedi-

ately below the string. Mice underwent a single 60 sec trial in which they were initially

suspended by their forepaws in the middle of the string. Their ability to traverse the

string during this trial was assessed using a 0 to 5 rating scale: 0 = unable to remain on

the string; 1 = stationary hanging by fore- or hindpaws; 2 = stationary hanging by fore-

or hindpaws with unsuccessful attempts to grasp string with all four paws; 3 = hanging

onto string by all four paws but no lateral movement; 4 = hanging onto string using all

four paws and tail and moving laterally; 5 = escaping to edge of string and contacting

wooden support beam. Unless the mouse fell off the string at any point during the test

(thereby earning a score of 0), the maximum score obtained during the trial was recorded.

The trial was terminated immediately if a score of 5 was achieved (Moran et al., 1995).

Between mice, the apparatus was cleaned with 70% EtOH to diminish odor cues.

2.2.4 Inverted grip hang

Vestibular function and muscle strength were tested with the inverted grip hang. The

testing apparatus consisted of a wire grid of the following dimensions: 45 cm long and

30 cm wide, with a grid spacing of 1 cm2. Foam supports were used to suspended the

grid 40 cm above a padded surface. Mice were placed onto the center of the grid, and
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the grid was inverted. The amount of time the mice were able to remain on the grid was

recorded during a single 60 sec trial. If the mice remained on the grid for the entire trial,

or escaped over the edge of the grid, the maximum time of 60 sec was given. Otherwise,

the latency to fall from the grid was recorded (Erbel-Sieler et al., 2004). Between mice,

the apparatus was cleaned with 70% EtOH to diminish odor cues.

2.2.5 Y-maze

Working memory was analyzed by observing spontaneous alternation behavior in the

Y-maze. The maze was constructed of black plastic material and consisted of three arms

(30 cm long x 8 cm wide x 15 cm high) extending at 120°angles from a triangular central

region (side length, 8 cm; wall height, 15 cm). Prior to use, the maze was cleaned with

a 70% EtOH solution to diminish odor cues. Each mouse was placed randomly at the

end of one of the arms and allowed to freely explore the maze for 10 min. The sequence

of arm entries was manually recorded, and a successful arm entry was noted when all

four paws of the mouse crossed the entrance of an arm. Immediate arm re-entries (e.g.

moving from arm 1 into the center and then back to arm 1) were counted as a single arm

entry. Alternation was defined as successive entries into all three arms of the maze in

overlapping triplet sets (e.g., 1, 3, 2 or 2, 3, 1 but not 1, 2, 1). The maximum number

of alternations possible was calculated as the total number of recorded arm entries minus

two. Alternation percentage was then determined using the following equation: (number

of alternations made/maximum number of alternations possible) x 100 (Arendash et al.,

2001; Jawhar et al., 2012).

2.2.6 Cross maze

Spontaneous alternation behavior was also analyzed in the cross maze. The maze was

constructed of black plastic material and consisted of four arms (30 cm long x 8 cm wide

x 15 cm high) extending at 90°angles from a square central region (side length, 8 cm;

wall height, 15 cm). Trials were conducted and data were recorded as for the Y-Maze.

However, alternation was defined as successive entries into all four arms of the maze in

overlapping quadruplet sets (e.g., 1, 3, 2, 4 or 2, 3, 4, 1 but not 1, 2, 3, 1). The maximum

number of alternations possible was calculated as the total number of recorded arm entries

minus three. Alternation percentage was determined as for the Y-Maze (Jawhar et al.,

2012).
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2.2.7 Elevated plus maze

The elevated plus maze was used to measure anxiety. It consisted of four arms (15 cm

long x 5 cm wide) extending at 90°angles from a square central region (side length, 5 cm).

The entire maze was elevated 75 cm above a padded surface. Two of the arms situated

180°from each other were enclosed on three sides by a 15 cm high clear plastic wall. The

remaining two arms were open to the surroundings on all sides. At the start of testing,

each mouse was placed in the central region facing one of the open arms. Mice were then

allowed to freely explore the apparatus during a single 5 min trial. The percentage of time

spent in the open arms relative to the total test duration and the distance traveled were

measured using the ANY-maze video tracking system (v4.81; Stoelting) (Lister, 1987).

2.2.8 Open field

The open field was employed to assess exploratory behavior and general motor activity.

The open field apparatus consisted of a 50 x 50 cm square arena with 40 cm high walls. The

mice were given a single trial in which they were placed into the center of the open field and

allowed to freely explore the enclosure for 5 min. Total distance traveled was automatically

measured by the ANY-Maze video tracking system. During the trial, rearing behavior was

manually scored by an observer through the ANY-software. Rearing was defined as any

instance in which the mouse stood on its hind legs to explore the environment. Rearing

was scored identically regardless of whether it occurred against a wall or toward the center

of the arena. Separate rearing episodes were counted if a mouse briefly returned to all

four paws before standing vertically again (Archer, 1973; Hillmann et al., 2012).

2.2.9 Morris water maze

The Morris water maze (MWM) was used to evaluate spatial reference memory. This

task was originally developed for rats but has since been modified for mice (Morris, 1981;

Vorhees and Williams, 2006). The goal of the MWM is for mice to learn to use spatial

cues to locate a hidden platform in a pool of water. For this experiment, a circular pool

(110 cm diameter) and a circular platform (10 cm diameter) were employed. The pool

was filled with tap water until the platform was submerged to a depth of 1 cm. The

water was made opaque by adding non-toxic white paint and maintained at 20 ± 2 °C
for the test duration. The pool was placed in a room with both proximal (distinct shapes

taped to the north, south, east and west edges of the pool) and distal (e.g. furniture and

other equipment in the room) visual cues. Overhead incandescent lights provided even
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illumination of the pool’s surface. Using the ANY-Maze video tracking software, the pool

was divided into four virtual quadrants and a goal region that contained the platform.

These quadrants were defined based on their spatial relationship to the platform: left,

right, opposite and goal quadrant, which contained the platform. Trial duration, distance

traveled, swimming speed, swimming path and quadrant preference were all recorded by

the ANY-Maze software.

Testing began with cued training trials. For these trials, the proximal visual cues were

removed, and the platform was marked with a triangular flag. Mice were introduced into

the water at the edge of the pool facing the wall. They were then given 1 min to find

the submerged platform. If a mouse located the platform and remained on it for 1-2 sec,

the trial automatically ended. Mice that failed to find the platform in 60 sec were gently

guided to it. All mice were allowed to sit on the platform for 10 sec before being removed

from the pool. To prevent hypothermia, all mice were kept in front of a heat lamp for 3

min before being returned to their home cage. Each mouse received four training trials

per day with an average inter-trial interval of 15 min. Both the location of the platform

and the position at which mice were introduced into the pool changed between trials (see

(Vorhees and Williams, 2006)). Cued training continued until all groups of mice reached

criterion (an average latency to locate the platform of ≤ 10 sec for one day of trials).

After reaching criterion in the cued training trials, mice began acquisition training 24

h later. For this phase, the flag was removed from the platform and proximal visual cues

were returned. The platform location remained stationary for each mouse throughout

training. At the start of every trial, mice were introduced into the pool from one of

four predefined entry points. The order in which these entry points were used varied

between training days (see (Vorhees and Williams, 2006)). To avoid quadrant bias, the

experimental cohorts were randomly split and trained to find one of two different platform

locations. Trials were conducted as during the cued training phase. Acquisition training

was terminated once all groups of mice reached criterion (see above).

Twenty-four hours after the last acquisition trial, a probe test was performed to mea-

sure spatial reference memory. The platform was removed from the pool, and mice were

introduced into the water from a novel entry point. Mice were then allowed to swim

freely for 1 min while their swimming path was recorded. Mice that have acquired a

spatial search strategy tend to swim more directly to the platform location and remain

close to it for the duration of the probe trial. This leads to a clear preference for the goal

quadrant, indicating robust spatial memory. However, mice that learned the platform

location by chance, or have weaker spatial memories, generally fail to demonstrate goal

quadrant preference.
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2.3 Molecular biology and biochemistry

2.3.1 Media preparation for Escherichia coli culturing

The following media were used for culturing Escherichia coli (E. coli) bacteria.

Lysogeny broth (LB) - ampicillin medium

10 g Bacto-Tryptone (Roth), 5 g Bacto-Yeast (Roth) and 10 g NaCl (Roth) were

dissolved in 1 L distilled, deionized water (ddH2O). The pH was adjusted to 7.0 with 10

M NaOH (Applichem), and the solution was sterilized by autoclaving. Before use, 1 mL

ampicillin (50 mg/mL stock; Roth) was added to the medium to give a final concentration

of 50µg/mL.

LB-ampicillin agar plates

15 g of agar (Roth) were added to 1 L LB medium. The agar was dissolved by

autoclaving. After cooling to 50 °C, 1 mL of ampicillin was added to the medium for a

final ampicillin concentration of 50µg/mL. The sterile LB-ampicillin-agar was poured into

10 cm sterile Petri dishes (Greiner Bio One) and allowed to solidify under a laminar flow

hood.

Super optimal broth with catabolite repression (SOC) medium

20 g Bacto-Tryptone, 5 g Bacto-Yeast, 0.5 g NaCl and 2.5 mL 1 M KCl (Roth) were

diluted in 970 mL in ddH2O. The pH was adjusted to 7.0 using 10 M NaOH, and the so-

lution was sterilized by autoclaving. Immediately before use, the following filter-sterilized

supplements were added to the solution: 10 mL 1 M MgCl2 (Sigma) and 20 mL 1 M

glucose (Sigma).

NZY+ medium

10 g NZ amine (casein hydrolysate; Fluka), 5 g Bacto-Yeast and 5 g NaCl were added

to 1 L ddH2O. The pH was adjusted to 7.5 using 10 M NaOH, and the solution was

sterilized by autoclaving. The following filter-sterilized supplements were added to the

solution prior to use: 12.5 mL 1 M MgCl2, 12.5 mL 1 M MgSO4 (Roth) and 10 mL 2 M

glucose.
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2.3.2 TBA1 plasmid mutagenesis

The TBA8 plasmid was created from the TBA1 plasmid through mutagenesis per-

formed with the QuickChange II XL Kit (Stratagene). The mutagenesis PCR reaction

was set up as outlined in Table 2.6. Amplification was carried out using the cycling pa-

rameters detailed in Table 2.7. Following amplification, 1 µL of Dpn I was added to the

PCR products. Reaction mixtures were gently pipetted and then incubated in an agitat-

ing heat block (Thermomixer Compact; Eppendorf) for 1 h at 37 °C and 300 revolutions

per minute (rpm). XL10-Gold ultracompetent E. coli cells were thawed on ice. Forty-five

µL of cells were then aliquoted into pre-chilled 15 mL conical tubes (Grenier Bio One) and

2 µL of β-mercaptoethanol (β-ME) were added to each aliquot. Mixtures were incubated

for 10 min on ice, swirling gently every 2 min. Two µL of Dpn I - treated deoxyribonucleic

acid (DNA) were added to each aliquot of β-ME treated cells, the reactions were swirled

gently and then incubated 30 min ice. After incubation, samples were heat-pulsed for 30

sec in a 42 °C water bath and returned to ice for 2 min. NYZ+ medium (see Section

2.3.1) was preheated to 42 °C, and 0.5 mL was added to each sample. Samples were incu-

bated on an orbital shaker (GFL) at 250 rpm for 1 h at 37 °C. Transformation reactions

were then spread onto pre-warmed LB-ampicillin agar plates (see Section 2.3.1) at various

dilutions (total plating volume: 250 µL). Plates were inverted and incubated for > 16 h

at 37 °C. To screen for bacteria containing the mutagenized plasmid, individual bacterial

colonies were picked and cultured in 100 µL of LB-ampicillin medium (see Section 2.3.1)

in a sterile 96-well plate (Grienier Bio One). Cultures were incubated on an orbital shaker

at 250 rpm for 4 h at 37 °C. The resulting bacterial suspensions served as templates for

mutagenesis screening PCR (see Tables 2.8 and 2.9).

2.3.3 Escherichia coli transformation

Fifty µL aliquots of NEB 5α Competent E. coli (Subcloning efficiency; New England

Biolabs (NEB)) were thawed on ice. Approximately 20 - 80 ng of TBA1 or TBA8 plasmid

DNA were added to each aliquot at volumes of 1 or 2 µL. The bacteria/plasmid solutions

were gently mixed by flicking the tubes, followed by 30 min incubation on ice. Heat-

shock was performed by immersing the mixtures for 30 sec in a 42 °C water bath without

mixing. After heat shock, mixtures were returned to ice for 5 min. Nine hundred fifty µL

of room temperature (RT) SOC medium (see Section 2.3.1) were added to each sample,

and samples were incubated on an orbital shaker at 250 rpm for 1 h at 37 °C. The SOC

bacterial suspension cultures were spread onto pre-warmed LB-ampicillin agar plates (see

Section 2.3.1) at various dilutions (total plating volume: 100 µL). Plates were inverted
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and then incubated ON (14-16 h) at 37 °C.

2.3.4 Plasmid purification

Plasmid purification was performed using the reagents from the GeneJETTM Plasmid

Miniprep Kit (Fermentas). Individual colonies of transformed E. coli (see Section 2.3.3)

or 5 µL of 4 h mutagenesis screening culture (see Section 2.3.2) were introduced into a

15 mL tube containing 5 mL of LB-ampicillin medium (see Section 2.3.1). Cultures were

incubated on an orbital shaker ON at 250 rpm and 37 °C. After incubation, bacterial pel-

lets were collected by centrifuging cultures at 5500 rpm (Heraeus Megafuge 10R; Thermo

Fischer Scientific) for 5 min at room temperature and subsequently removing the super-

natant. Pellets were resuspended in 250 µL of Resuspension Solution, vortexed to remove

clumps and transferred to a 1.5 mL microcentrifuge tube. Lysis Solution was added at

a volume of 250 µL per sample, and samples were mixed by inverting the tubes 6 times.

Samples were then incubated at RT for 4 min. Next, 350 µL of Neutralization Solution

were added and immediately mixed by inverting the tubes 6 times. After centrifuging

samples at 13,000 g (Heraeus Biofuge Stratos; Thermo Fischer Scientific) for 5 min at RT,

the resulting supernatants were carefully removed and transferred to GeneJETTM spin

columns. Columns were centrifuged at 13,000 g for 1 min at RT, and the flow-through was

discarded. Five hundred µL of Wash Solution were added to each column, and columns

were centrifuged again at 13,000 g for 1 min at RT. Flow-through was discarded, and the

column washing step was repeated an additional time. After the final wash, dry columns

were centrifuged at 13,000 g for 1 min at RT to remove residual EtOH. Columns were

then transferred to fresh 1.5 mL microcentrifuge tubes. Fifty µL of Elution Buffer were

added to the center of each column. Columns were incubated 2 min at RT followed by

centrifugation at 13,000 g for 2 min at RT. To increase plasmid recovery, the elution step

was repeated with an additional 50 µL of Elution Buffer, bringing the total flow-through

volume to 100 µL. Purified plasmid was stored at -20 °C until use.

2.3.5 DNA sequencing

Mutagenized plasmids were prepared for sequencing by diluting them to a concentra-

tion of 50 - 100 ng/µL in a total volume of 50 µL ddH2O. Gx2425 and Gx2426 primers

(see Table 2.2) were diluted to a concentration of 2 pmol/µL in a total volume of 20 µL

ddH2O. Plasmids and primers were sent to Eurofins MWG Operon (Ebersberg, Germany)

to be sequenced using their “Value Read Tube”service. Sequencing results for the mutage-

nized plasmids were input into the nucleotide basic local alignment search tool (BLASTn;

45



Chapter 2. Materials and Methods

http://blast.ncbi.nlm.nih.gov/Blast.cgi) and compared against the unaltered

parent sequence. Plasmid samples with the desired mutation were selected for further

amplification and purification.

2.3.6 Isolation and purification of TBA8 transgene

EcoRI (NEB) restriction digestions were performed to isolate the TBA8 transgene

cDNA insert from its pUC18 plasmid backbone. The digestion reactions were set up as

follows:

Reagent Volume

EcoRI restriction enzyme (20 units/µL) 5.0 µL

NEB 10 x reaction buffer I 5.0 µL

5 µg TBA8 plasmid 35.0 µL

ddH2O 5.0 µL

Total volume per sample 50.0 µL

Table 2.1: Reaction mixture for EcoRI digestion of TBA8 plasmid.

Digestion reactions were incubated at 350 rpm for 2 h at 37 °C in a Thermomixer

Compact. The digestion products were mixed with 5 µL of 10x agarose gel loading buffer

and resolved on a 1% 1x Tris base acetic acid (TAE) agarose gel (see Section 2.3.15).

Five µL of Quick-Load 1 kilobase (kb) DNA ladder (NEB) were also loaded onto the gel

to serve as a standard. The gel was visualized using the low-intensity ultraviolet (UV)

light setting on a GelDoc 2000 (Biorad). Bands corresponding to the TBA8 transgene

insert (7.2 kb) were excised with a sterile scalpel. The TBA8 transgene insert was purified

using the QIAquick Gel Extraction Kit (Qiagen). The manufacturer’s instructions were

used with the following modifications: Incubation of the gel slices with Buffer QG was

performed at 1000 rpm for 10 min at 50 °C in a Thermomixer Compact. All centrifugation

steps were performed at RT and 16,900 g (Heraeus Biofuge Stratos). The Qiaquick spin

columns were washed once with 0.5 mL Buffer QG and once with Buffer PE. Columns

were incubated for 5 min with PE buffer prior to centrifugation. DNA was eluted from the

columns using 50 µL of Tris/ethylenediaminetetraacetic acid (TE) buffer (5 mM Tris (pH

7.4; Roth), 0.1 mM ethylenediaminetetraacetic acid (EDTA; Applichem)) per column.

The purified TBA8 transgene was prepared for pronuclear microinjection by diluting

it to a final concentration of 30 ng/µL in a minimum volume of 200 µL TE buffer (see

above). The diluted transgene was then centrifuged twice at 14,000 g for 15 min at RT
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(Heraeus Biofuge Stratos). The top 80% of the transgene solution was reserved after

each centrifugation, and the bottom 20% was discarded. Proof of transgene purity was

provided by resolving ≈ 40 ng of TBA8 transgene cDNA on a 1% TAE agarose gel and

comparing it against 5 µL of Quick-Load 1 kb DNA ladder (See Section 2.3.15).

2.3.7 Pronuclear injection of TBA8 transgene

Pronuclear injection of the purified TBA8 transgene (see Section 2.3.6) was performed

by the Transgenic Service of the Animal Facility at the Max-Planck-Institute for Ex-

perimental Medicine (Göttingen, Germany). The TBA8 transgene was injected into the

pronuclei of fertilized C57BL/6J mice according to standard protocols (Ittner and Götz,

2007).

2.3.8 DNA isolation for genotyping of transgenic mice

Genomic DNA isolated from ear or tail biopsies was used to genotype all transgenic

mouse lines. Lysis buffer (100 mM Tris/HCl (pH 8.5), 5 mM EDTA, 0.2% SDS ((%w/v);

Roth) 200 mM NaCl and 10 µL Proteinase K (20 mg/mL stock; Peqlab)) was added to

ear or tail biopsies at a volume of 200 or 500 µL, respectively. Biopsies were incubated at

400 rpm for 14-16 h at 55 °C in a Thermomixer Compact. After incubation, samples were

centrifuged at 17,000 rpm for 20 min at 4 °C (Heraeus Biofuge Stratos). The resulting

supernatants were transferred to 1.5 mL microcentrifuge tubes containing 200 µL (ear

biopsy samples) or 500 µL (tail biopsy samples) of isopropanol (Roth) and gently mixed.

Solutions were then centrifuged at 13,000 rpm for 10 min at RT (Heraeus Biofuge 15;

Sepatech). Following centrifugation, the supernatants were discarded. The DNA pellets

were washed with 200 µL (ear biopsy samples) or 500 µL (tail biopsy samples) of 70%

EtOH (Merck) and centrifuged again at 13,000 rpm for 10 min at RT. Supernatants were

discarded, and the DNA pellets were dried for 30 min at 37 °C in a Thermomixer Compact.

Molecular-grade water (Braun) was added to each sample at a volume of 30 µL (ear biopsy

samples) or 50 µL (tail biopsy samples). DNA was allowed to dissolve for 2-3 h at 55 °C
in a Thermomixer Compact before being stored at 4 °C. All DNA samples were diluted

to a concentration of 20 ng/µL in a 30 µL volume of molecular grade water prior to being

used for genotyping PCR.
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2.3.9 RNA isolation from mouse brain

Total RNA was isolated from mouse brain tissue using Trifast® reagent (Peqlab).

Frozen brain hemispheres (minus the olfactory bulb) were weighed and added to 1 mL

Trifast® per 100 mg tissue. Samples were homogenized with 10 strokes of an R50D ho-

mogenizer (CAT) set at 800 rpm and then incubated 5 min at RT for dissociation of

nucleoprotein complexes. Chloroform (Merck) was added to each sample at a volume of

0.2 mL per 1 mL Trifast®, samples were vigorously shaken for 15 sec and then incubated

for 10 min at RT. To separate the RNA, samples were centrifuged at 12,000 g for 15 min at

4 °C (Heraeus Biofuge Stratos). After centrifugation, the upper, RNA-containing aqueous

phase was carefully transferred to a sterile 2 mL microcentrifuge tube. RNA was precip-

itated by adding 0.5 mL isopropanol per 1 mL Trifast® to each sample, gently mixing

and then incubating for 20 min on ice. Samples were subsequently centrifuged at 12,000

g for 10 min at 4 °C. The supernatant was discarded. RNA pellets were washed twice by

adding a volume of 75% EtOH equivalent to that of the isopropanol and centrifuging at

7,500 g for 10 min at 4 °C. After washing, residual EtOH was carefully removed. RNA

pellets were then dried for 15 min at RT. To dissolve the RNA, 30 µL of ddH2O were

added to each sample, and samples were incubated 20 min on ice. RNA was stored at -80

°C until use.

2.3.10 Nucleic acid concentration measurement

DNA and RNA concentrations were measured using the double-stranded DNA (ds-

DNA) and RNA settings of the Biophotometer (Eppendorf). Two µL of each sample

were added to individual volumes of 80 µL ddH2O and gently mixed in a microcentrifuge

tube. Prior to sample measurement, 82 µL of molecular grade water was used as a blank

for the photometry readings. Samples were added to Uvette® 220-1600 nm cuvettes

(Eppendorf), and the volumes of sample and diluent were input into the photometer.

Concentration measurements were considered accurate if the 260/280 and 260/230 ab-

sorbance ratios were between 1.6 and 2.0.

2.3.11 Reverse transcription

Total RNA isolated from brain tissue (see Section 2.3.9) was used as a template for

cDNA synthesis. Prior to reverse transcription, RNA was digested by deoxyribonuclease

I (DNase I) (Fermentas). In brief, 1 µg of RNA was added to a 500 µL microcentrifuge

tube containing 1 µL of 10x reaction buffer with MgCl2 and 1 µL of (1 unit/µL) DNase
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I. The reaction mixtures were brought to a total volume of 10 µL using ddH2O. Samples

were then incubated 30 min at 37 °C in an UNO-Thermoblock thermal cycler (Biometra).

To inactivate the DNase, 1 µL of 25 mM EDTA was added to each reaction mixture, and

samples were incubated for 10 min at 65 °C. The entire volume (11 µL) of DNase-digested

sample was used as a template for reverse transcription.

cDNA was synthesized using the First Strand cDNA Synthesis Kit (Fermentas). Re-

verse transcription reaction mixtures were prepared by adding reagents into a sterile 500

µL microcentrifuge tube in the following order: DNase digested RNA template (11 µL), 1

µL random hexamer primer, 4 µL 5x reaction buffer, 1 µL RiboLock® RNase inhibitor (20

units/µL), 2 µL 10 mM dNTP mix and 2 µL M-MuLV reverse transcriptase (20 units/µL).

Total reaction volume equaled 21 µL. Reaction mixtures were incubated 5 min at 25 °C,

1 h at 37 °C and 5 min at 70 °C in an UNO-Thermoblock thermal cycler.

2.3.12 Primers

All primers were used at a final concentration of 10 pmol/µL (1:10 dilution of the 100

pmol/µL primer stock, prepared in ddH2O). In the table below, amplicon size (A; third

column) is given in base pairs.

Name Sequence (5’-3’) A Usage

Aβ3-42v2 for TCC GGC CAG AAC GTC GAT TC 248 genotyping, qPCR

Aβ3-42v2 rev GGA GAA GCA AGA CCT CTG C 248 genotyping, qPCR

Gx2425 AGT AAT GAA GTC ACC CAG CAG GGA GG 505
mutagenesis screening,

sequencing

Gx3426 TGA TCC AGG AAT CTA AGG CAG CAC C 505
mutagenesis screening,

sequencing

TBA1-delGlu3-for CCT GGA TCA CAA AAC GCT TCC GAC ATG ACT CAG G - TBA1 mutagenesis

TBA1-delGlu3-rev CCT GAG TCA TGT CGG AAG CGT TTT GTG ATC CAG G - TBA1 mutagenesis

hAPP for GTA GCA GAG GAA GAA GTG 250 genotyping

hAPP rev CAT GAC CTG GGA CAT TCT C 250 genotyping

Qiagen mouse

β-actin mix
proprietary sequence 149 qPCR

Table 2.2: List of primers used for qPCR, mouse genotyping and plasmid mutagenesis.

2.3.13 Quantitative real-time polymerase chain reaction (qPCR)

Analysis of brain transgene expression in the TBA4 and TBA8 lines was performed us-

ing the DyNAmoTM Flash SYBR® Green qPCR Kit (Thermo Fischer Scientific). cDNA

prepared as described in Section 2.3.11 was diluted 1:10 in ddH2O to serve as the sample
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qPCR template. Undiluted cDNA from all samples was pooled and serially diluted (undi-

luted, 1:10, 1:100, 1:1000) in ddH2O to create a standard curve of fluorescence intensity

versus cDNA concentration. qPCR reactions were set up on ice as described in Tables 2.3

and 2.4. The primers used in the reactions are listed in Table 2.2. cDNA dilutions were

first pipetted into 200 µL PCR tubes (Biozym Scientific) followed by the qPCR reaction

mix. Before starting the qPCR, tubes were briefly centrifuged using the Spectrafuge Mini

(Labnet Inc.) to remove air bubbles. The mouse β-actin gene was used as an internal

reference for normalizing transgene CT values. Mouse β-actin primers were purchased as

a mix from Qiagen. qPCR reactions were performed in the Mx3000P cycler (Stratagene)

according to the program outlined in Table 2.5. Data were collected using the MxPro

Mx3000P software (Stratagene).

Reagent Volume

1:10 cDNA dilution 1.0 µL

DyNAmoTM Flash master mix 10.0 µL

Rox dye 0.2 µL

Qiagen mouse β-actin primer mix 2.5 µL

ddH2O 6.3 µL

Total volume per sample 20.0 µL

Table 2.3: qPCR reaction mixture using Qiagen primers.

Reagent Volume

1:10 cDNA dilution 1.0 µL

DyNAmoTM Flash master mix 10.0 µL

Rox dye 0.2 µL

Aβ3-42v2 for primer 1.5 µL

Aβ3-42v2 rev primer 1.5 µL

ddH2O 5.8 µL

Total volume per sample 20.0 µL

Table 2.4: qPCR reaction mixture using TBA transgene primers.
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Step Temperature Duration

1 95 °C 10 min

2 95 °C 15 sec

3 64 °C 20 sec

4 72 °C 30 sec

5 repeat steps 2 - 4 a total of 40 times

6 95 °C 1 min

7 55 °C 30 sec

8 4 °C ∞

Table 2.5: qPCR program for TBA transgene expression analysis.

2.3.14 Polymerase chain reaction (PCR)

All reactions were carried out in 0.2 µL PCR tubes (Greiner Bio One) using the

LabCycler (SensoQuest). Reagents for the reaction mixtures listed in Tables 2.8, 2.10 and

2.11 were provided from the following companies: 10x reaction buffer, 25 mM MgCl2 and

Taq polymerase (Axon); dNTPs (100 mM dNTP set, diluted to 2 mM stock; Invitrogen).

Refer to Table 2.2 for primer details.

Mutagenesis PCR

Reagent Volume

10x reaction buffer 5.0 µL

TBA1 plasmid (150 ng) 6.7 µL

TBA1-delGlu3-for primer (125 ng) 1.2 µL

TBA1-delGlu3-rev primer (125 ng) 1.2 µL

dNTPs 1.0 µL

QuickSolution 3.0 µL

ddH2O 31.9 µL

PfuUltra HF DNA polymerase (2.5 units/µL) 1.0 µL

Total volume per sample 51.0 µL

Table 2.6: PCR reaction mixture for TBA1 plasmid mutagenesis.
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Step Temperature Duration

1 95 °C 1 min

2 95 °C 50 sec

3 60 °C 50 sec

4 68 °C 25 min

5 repeat steps 2 - 4 a total of 18 times

6 68 °C 7 min

7 4 °C ∞

Table 2.7: PCR program for TBA1 plasmid mutagenesis.

Mutagenesis screening PCR

PCR reactions were prepared using 4 h bacterial suspension cultures as a template

(see Section 2.3.2). Cultures known to carry the unaltered TBA1 plasmid or no plasmid

were used as positive and negative controls, respectively. Samples that produced PCR

products smaller than those resulting from the unaltered TBA1 plasmid were considered

to potentially contain the TBA8 mutation (deletion). The appropriate bacterial cultures

were then selected for further expansion, plasmid purification and sequencing.

Reagent Volume

Bacterial suspension 3.0 µL

Gx3425 primer 1.0 µL

Gx3426 primer 1.0 µL

dNTPs (2 mM) 2 µL

MgCl2 (25 mM) 1.6 µL

10x reaction buffer 2.0 µL

ddH2O 9.4 µL

Taq polymerase (5 units/µL) 0.2 µL

Total volume per sample 20.2 µL

Table 2.8: PCR reaction mixture for screening bacterial cultures for mutagenized plas-
mids.
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Step Temperature Duration

1 94 °C 2 min

2 94 °C 30 sec

3 65 °C 30 sec

4 68 °C 5 min

5 repeat steps 2 - 4 a total of 35 times

6 68 °C 8 min

7 4 °C ∞

Table 2.9: PCR program for screening bacterial cultures for mutagenized plasmids.

Mouse genotyping PCR

Reagent Volume

DNA (20 ng/µL) 2.0 µL

Aβ3-42v2 for primer 1.0 µL

Aβ3-42v2 rev primer 1.0 µL

dNTPs (2 mM) 2.0 µL

MgCl2 (25 mM) 1.6 µL

10x reaction buffer 2.0 µL

ddH2O 10.2 µL

Taq polymerase (5 units/µL) 0.2 µL

Total volume per sample 20.0 µL

Table 2.10: PCR reaction mixture for genotyping TBA and FAD42 mice.
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Reagent Volume

DNA (20 ng/µL) 2.0 µL

hAPP for primer 0.5 µL

hAPP rev primer 0.5 µL

dNTPs (2 mM) 2.0 µL

MgCl2 (25 mM) 3.2 µL

10x reaction buffer 2.0 µL

ddH2O 9.6 µL

Taq polymerase (5 units/µL) 0.2 µL

Total volume per sample 20.0 µL

Table 2.11: PCR reaction mixture for genotyping 5XFAD and FAD42 mice.

Step Temperature Duration

1 94 °C 3 min

2 94 °C 45 sec

3 58 °C 1 min

4 72 °C 1 min

5 repeat steps 2 - 4 a total of 35 times

6 72 °C 5 min

7 4 °C ∞

Table 2.12: PCR program for genotyping TBA, 5XFAD and FAD42 mice.

2.3.15 DNA electrophoresis

PCR and restriction digestion products were analyzed using agarose gel electrophore-

sis. Ninety mL of the required 1x buffer were mixed with 2.25, 1.8 or 0.9 g of the ap-

propriate agarose (see Table 2.13) to prepare 2.5%, 2% or 1% gels, respectively. The

mixture was boiled in a microwave at 500 W until the agarose was completely dissolved.

Ethidium bromide (10 mg/mL; Roth) was mixed into the agarose solution to yield a final

concentration of 0.66 µg/mL. Once the agarose solution was slightly cooled, it was poured

into a casting tray with a 20-pocket sample comb, the air bubbles were removed, and it

was left at RT until solidified. After the gel had set, the comb was removed. The gel

was then placed in an electrophoresis chamber containing the same 1x buffer as used to

prepare the gel. Ten µL of PCR product or 25 µL of restriction digestion product were
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mixed with 1 or 2 µL of 10x agarose gel sample buffer, respectively, and pipetted into

individual wells. Five µL of the appropriate ladder were also added to a single well on

each gel (see Table 2.13). The electrophoresis chamber was connected to a Powerpack

P25 power supply (Biometra) set to 110V. The gel was run for 30 - 60 min to resolve the

DNA and then visualized under UV light using the Gel Doc 2000 (Biorad). All gels were

documented with the Quantity One software package (v4.30; Biorad).

50x TAE buffer: 242 g Tris was dissolved in 500 mL ddH2O. 100 mL 0.5 M Na2EDTA

(pH 8.0; Roth) and 57.1 mL glacial acetic acid (Applichem) were then added. The volume

was adjusted to 1 L with ddH2O. This solution was diluted 1:50 in ddH2O prior to use.

10x Tris/borate/ethylenediaminetetraacetic acid (TBE) buffer: 108 g Tris and

55 g boric acid (Sigma) were dissolved in 900 mL ddH2O. 40 mL 0.5 M Na2EDTA (pH 8.0)

was added, and the volume was adjusted to 1 L with ddH2O. This solution was diluted

1:10 in ddH2O before use.

10x agarose gel sample buffer: 250 mg bromophenol blue (Riedel de Haen) was dis-

solved in 150 mM Tris (pH 7.6). 60 mL of glycerol (Sigma) and 7 mL ddH2O were added.

The completed buffer was diluted 1:10 directly in the sample of interest.

Experiment Gel % Agarose Buffer DNA ladder

Genotyping 2
standard agarose

(Axon)
TBE 100 bp (Bioron)

Mutagenesis screening 2.5 standard agarose TAE Quick-load 1 kb (NEB), 100 bp

Restriction digestion 1
SeaKem GTG agarose

(Biozym)
TAE Quick-load 1 kb

Transgene verification 1 standard agarose TAE Quick-load 1 kb

Table 2.13: Parameters and reagents for agarose gel electrophoresis.

2.3.16 Protein isolation from mouse brain

All biochemical analyses were performed using protein extracted via the following

method, unless otherwise noted. Frozen brains (n = 3-4 per group) were homogenized on

ice in Tris buffered saline (TBS; 120 mM NaCl, 50 mM Tris, pH 8.0) containing complete

protease inhibitor tablets (Roche) using an R50D homogenizer (CAT) at 800 rpm. The

extraction ratio (brain tissue:TBS) was 1:8 (w/v). Samples were centrifuged at 27,000 g

for 20 min at 4 °C (Heraeus Biofuge Stratos). Supernatants (TBS fractions) were removed,

and the remaining pellets were resuspended in 0.8 mL 2% SDS (%w/v) with complete
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protease inhibitor, sonicated with a Branson Sonifier 100 at intensity 2 (G. Heinemann

Ultaschall und Labortechnik) and centrifuged at 27,000 g for 15 min at 4 °C. The resulting

supernatants (SDS fractions) were treated with 1 µL benzonase (Novagen) and incubated

10 min at 4 °C on a rotary wheel. All fractions were stored at -80 °C until use.

2.3.17 Protein concentration determination

Protein concentration was measured using the Roti®-Quant universal colorimetric

protein concentration analysis kit (Roth). Samples and standards were prepared in trip-

licate according to a modified version of the micro preparation protocol. In brief, a stock

solution of 2 mg/mL albumin fraction V (Roth) in 0.01 M PBS was diluted to produce

a standard curve of BSA (bovine serum albumin) versus optical density at 492 nm. The

following BSA standard dilutions were prepared in a total volume of 200 µL 0.01 M PBS:

2000, 1500, 1000, 750, 500, 250, 125 and 0 µg/mL (blank). TBS protein lysates were

diluted 1:10 and SDS protein lysates were diluted 1:20 in 0.01 M PBS to give a total

volume of 200 µL. Working solution was prepared by mixing 15 parts Reagent 1 with 1

part Reagent 2 from the Roti®-Quant universal kit. Fifty µL of each standard, sample

and blank were pipetted in triplicate into a 96 well plate. One hundred µL of working

solution were then added to each well using a repeat pipettor (Eppendorf). The samples

were gently agitated on a plate mixer, incubated for 30 min at 37°C and cooled for 5 min

at RT. Sample and standard absorbance values were measured at 492 nm using a µQuant

plate reader (BioTek Instruments, Inc.) controlled the MikroWin 2000 software package

(v4.04; Mikrotek). Protein sample concentrations were calculated relative to the standard

curve and multiplied by the dilution factor to give the final concentration.

2.3.18 Enzyme-linked immunosorbent assay (ELISA)

ELISA measurements were performed by the group of Stephan Schilling and Hans-

Ulrich Demuth at Probiodrug AG in Halle, Germany. Quantitative measurements of

Aβx−42 and AβpE3−x in the TBS and SDS mouse brain fractions were performed according

to the manufacturer’s instructions using the amyloid-beta (1-42) and amyloid-beta (N3pE-

42) ELISA kits, respectively (IBL International). All samples were run in triplicate, and

Aβ levels were normalized to brain wet weight.
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2.3.19 Glutaminyl cyclase enzyme activity measurement

QC enzyme activity was measured by the group of Stephan Schilling and Hans-Ulrich

Demuth at Probiodrug AG in Halle, Germany. The protocol has been previously described

(Schilling et al., 2011). In brief, mouse brain hemispheres were homogenized in lysis buffer

(10 mM Tris, 100 mM NaCl, 5 mm EDTA, 0.5% Triton X-100, and 10% glycerol, pH

7.5) using a Precellys homogenizer (Peqlab). The homogenate was further sonicated and

centrifuged at 16,000 g for 30 min at 4 °C. Reactions were carried out at 37 °C in 25 mM 3-

(N-morpholino)propanesulfonic acid (MOPS; pH 7.0, 0.1 mM N-ethylmaleinimide). After

centrifugation at 16,000 g for 10 min, the supernatant was applied to high performance

liquid chromatography (HPLC) analyses using an RP18 LiChroCART HPLC Cartridge

and the HPLC system D-7000 (Merck-Hitachi). The samples were injected and separated

by increasing the concentration of solvent A (acetonitrile containing 0.1% trifluoroacetic

acid (TFA)) from 8 to 20% in solvent B (H2O containing 0.1% TFA). QC activity was

quantified from a standard curve of pGlu-naphthylamide (Bachem) determined under

assay conditions.

2.4 Mass spectrometric analysis of mouse brain

Mass spectrometric analysis of mouse brain tissue was carried out by the group of Erik

Portelius and Kaj Blennow at the University of Gothenburg, Sweden. Homogenization

of brain tissue was performed as described previously (Portelius et al., 2009). Briefly,

the brains (≈ 50 mg) were homogenized (Pellet Pestle®, Sigma-Aldrich) on ice in TBS

(20mM Tris, 137 mM NaCl, pH 7.6) with complete protease inhibitor tablets (Roche).

The extraction ratio (brain tissue:TBS) was 1:5 (w/v). Formic acid (FA) was added to the

sample (final concentration 70%) and followed by sonication (Power: 15, Amplit.microns;

TUne: “middle”) and centrifugation at 30,000 g for 1 h at 4 °C. The FA-soluble Aβ extract

was dried and dissolved in FA and finally neutralized using 0.5 M Tris.

Immunoprecipitation (IP) using the KingFisher magnetic particle processor (Thermo

Fischer Scientific) and mass spectrometric analysis using matrix-assisted-laser-desorption/

ionization time-of-flight/time-of-flight (MALDI TOF/TOF) mass spectrometry (MS) were

performed as described earlier (Portelius et al., 2007). Briefly, an aliquot (4 µL, 1 mg/mL)

of the Aβ-specific antibodies 6E10 and 4G8 was separately added to 50 µL Dynabeads

M-280 sheep anti-mouse IgG (Invitrogen) according to the manufacturer’s product de-

scription. The washed beads with bound antibody (50 µL 6E10 and 50 µL 4G8) were

combined and used for IP of the neutralized FA fraction. IP of brain tissue with the
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antibody 1-57 was conducted as described above.

The bead/FA fraction was transferred to a KingFisher magnetic particle processor

for automatic washing and elution of the Aβ isoforms. The collected supernatant was

dried in a vacuum centrifuge and redissolved in 5 µL 0.1% FA in 20% acetonitrile. MS

measurements were performed using a Bruker Daltonics UltraFlex MALDI TOF/TOF

instrument (Bruker Daltonics).

2.5 Antibodies

Name Host Epitope Stock conc. Working dilution Company Use

4G8 mouse Aβ18−22 1 mg/mL
1:500 (TBA42 IH)

1:1000 (5XFAD, FAD42 IH)
1:13.5 (IP)

Covance IP, IH

2-48 mouse AβpE3−7 1 mg/mL
1:250 (TBA42 IH)

1:500 (5XFAD, FAD42 IH)
Synaptic Systems IH

1-57 mouse AβpE3−5 1 mg/mL 1:13.5 Synaptic Systems IP

6E10 mouse Aβ3−8 1 mg/mL 1:13.5 Covance IP

GFAP rabbit
GFAP

polyclonal
1 mg/mL 1:2000 Synaptic Systems IH

G2-11 mouse Aβ33−42 1 mg/mL 1:2000 The Genetics Company IH

Aβ[N] rabbit
Aβ N-terminus

polyclonal
0.1 mg/mL 1:2000 IBL IH

24311 rabbit Aβ polyclonal - 1:500 Bayer lab IH

CatD rabbit
cathepsin D
polyclonal

11.7 mg/mL 1:500 Dako IH

Syn16 rabbit
syntaxin 16b
polyclonal

1 mg/mL 1:2000 Synaptic Systems IH

Vti1b rabbit
vti1b

polyclonal
- 1:250 Synaptic Systems IH

NeuN mouse
neuronal nuclei

clone A60
1 mg/mL 1:500 Millipore IH

Table 2.14: Primary antibodies used for immunohistochemistry (IH) and IP/MS (IP).

58



Chapter 2. Materials and Methods

Antibody Stock conc. Working dilution Company

Rabbit anti-mouse immunoglobulins,
biotinylated

- 1:200 Dako

Swine anti-rabbit immunoglobulins,
biotinylated

- 1:200 Dako

Alexa Fluor®594-conjugated
immunoglobulins, chicken anti-mouse

2 mg/mL 1:300 Invitrogen

Alexa Fluor®488-conjugated
immunoglobulins, chicken anti-rabbit

2 mg/mL 1:300 Invitrogen

DyLight594 conjugated
immunoglobulins, goat anti-mouse

1 mg/mL 1:300
Thermo Fischer

Scientific
DyLight488 conjugated

immunoglobulins, goat anti-rabbit
1 mg/mL 1:300

Thermo Fischer
Scientific

Table 2.15: Polyclonal secondary antibodies used for immunohistochemistry.

2.6 Immunohistochemistry

2.6.1 Paraffin embedding of mouse brain and spinal cord

Following fixation (see Section 2.1.7), brain and spinal cord tissues were placed in

the TP 1020 Automatic Tissue Processor (Leica) for dehydration and paraffin immersion.

The following incubation protocol was used: 5 min in 4% PBS-buffered formalin; 30 min

in tap water; 1 h each in 50%, 60%, 70%, 80% and 90% EtOH solutions; 2 x 1 h in 100%

EtOH; 1 h in xylol; 2 x 1 h in melted paraffin (Roth). Following processing, tissue was

embedded in paraffin blocks using an EG1140 H Embedding Station (Leica).

2.6.2 3,3’-Diaminobenzidine (DAB) immunohistochemistry

Four µm sagittal brain sections or spinal cord cross sections were cut from paraffin-

embedded tissue blocks using an HM 335E microtome (Microm). Sections were transferred

onto Superfrost® slides (Thermo Fischer Scientific) in a RT ddH2O bath. Sections were

then affixed to the slides by immersing them into a 50-55 °C ddH2O bath (Medax). The

slides were dried 15 min on a 55 °C hot plate and then ON at 37 °C before being used for

immunohistochemistry.

For DAB staining, sections were deparaffinized and rehydrated using the following

incubations: 2 x 5 min in xylol; 10 min in 100% EtOH; 5 min in 95% EtOH; 5 min

in 70% EtOH; and 1 min in ddH2O. Endogenous peroxidases were blocked by treating

sections for 30 min a solution of 0.3% H2O2 ( %volume/volume, (%v/v); Roth) in 0.01

M PBS. Antigen retrieval was accomplished by heating the sections in 0.01 M citrate

buffer (pH 6.0; Roth) for 10 min (≈ 2 min at 800 watts (W) (until boiling), ≈ 8 min at
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80 W) and then cooling them 15 min at RT. Following a short rinse in ddH2O, sections

were permeabilized by a 15 min incubation in a solution of 0.1% Triton X-100 (%v/v;

Roth) in 0.01 M PBS. Sections were briefly washed twice in 0.01 M PBS before a 3 min

incubation in 88% FA to reveal intracellular Aβ. Two, 5 min washes in 0.01 M PBS

were performed to remove residual FA from the sections. Blocking of nonspecific antigens

was accomplished by circling the sections with a lipid pen (Pap Pen, Kisker Biotech) and

applying a solution of 10% FCS (fetal calf serum; %v/v; Thermo Fischer Scientific) and

4% low-fat dried milk powder (%w/v; Roth) in 0.01 M PBS. Sections were incubated 1 h

at RT. Primary antibodies (see Table 2.14) were diluted to the desired concentration in

a solution of 10% FCS in 0.01 M PBS. After removing the blocking solution, the diluted

primary antibodies were applied to the sections at a volume of ≈ 100 µL per section.

Sections were incubated in primary antibody ON (≈ 14-16 h) at RT.

On the second day, sections were washed 3 x 5 min in a solution of 0.1% Triton X-100,

followed by two brief rinses in 0.01 M PBS. Biotinylated secondary antibodies (see Table

2.15) were diluted to the desired concentration in a solution of 10% FCS in 0.01 M PBS

and applied to sections at a volume of ≈100 µL per section. Incubation in secondary

antibody occurred for 1 h at 37 °C. Avidin-biotin complex (ABC) solution was prepared

using the VECTASTAIN Elite ABC Kit (Vector Laboratories). Kit components were

added to a solution of 10% FCS in 0.01 M PBS at a dilution of 1:100 each. The prepared

ABC solution was incubated at 4 °C for a minimum of 30 min prior to use. Following

three, 5 min washes in 0.01 M PBS, sections were incubated in ≈100 µL ABC solution per

section for 1.5 h at 37 °C. The ABC solution was then removed by 3 x 5 min washes in 0.01

M PBS. Staining was visualized using DAB as a chromagen. DAB developing solution

was prepared by adding 100 µL of DAB stock solution (25 mg/mL DAB (Sigma) in 50

mM Tris/HCl (pH 7.5)) to 5 mL 50 mM Tris/HCl followed by 2.5 µL 30% H2O2. Sections

were incubated in DAB developing solution until the desired staining pattern was seen.

After development, sections were washed 3 x 5 min in 0.01 M PBS and counterstained

with hematoxylin (Roth; 40 sec hematoxylin immersion, 5 min wash in tap water). Prior

to mounting, sections were dehydrated using the following incubations: 1 min in 70%

EtOH; 5 min in 95% EtOH; 10 min in 100% EtOH; and 2 x 5 min in xylol. Each section

received 1-2 drops of Roti®-Histokitt mounting medium (Roth) before a cover slip was

applied to the slide.
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2.6.3 Combined DAB/HistoGreen immunohistochemistry

The first day of DAB/HistoGreen double-staining was performed as described in Sec-

tion 2.6.2. After development of the DAB chromagen on the second day, washing in 0.01 M

PBS, the endogenous peroxidase blocking step and the nonspecific antigen blocking step

were repeated as on day one. A second primary antibody (raised in a different species than

the first primary antibody, see Table 2.14) was diluted in a solution of 10% FCS in 0.01

M PBS. The antibody was applied to the sections and incubated ON at RT. On the third

day of staining, washing, secondary antibody incubations and ABC incubations were per-

formed as outlined in Section 2.6.2. The Histoprime HistoGreen chromagen (Linaris) was

prepared and developed according to the manufacturer’s instructions. Following washing

in 0.01 M PBS and counterstaining with hematoxylin, sections were dehydrated as follows:

30 sec in 70% EtOH; 30 sec in 95% EtOH; 2 x 30 sec in 100% EtOH; and 30 sec in xylol.

Each section received 1-2 drops of Roti®-Histokitt mounting medium before a cover slip

was applied to the slide.

2.6.4 Fluorescent immunohistochemistry

Fluorescent immunohistochemistry was performed using the protocol for DAB im-

munohistochemistry with the following modifications: The endogenous peroxidase block-

ing step was omitted. For primary antibody incubation, a mixture of two primary an-

tibodies derived from different species was applied to each section (see Table 2.14). A

mixture of fluorophore-conjugated secondary antibodies (see Table 2.15) was applied for

1.5 h at 37 °C for the secondary antibody incubation. During all subsequent steps, the

sections were protected from light. Immediately following the secondary antibody incu-

bation, sections were washed 3 x 5 min in 0.01 M PBS. Counterstaining was performed

by immersing the sections for 1 min in a solution of 4’,6-diamidino-2-phenylindole (DAPI,

Sigma) dissolved in ddH2O (1.5 mg/L) and then washing them twice for 1 min in 0.01 M

PBS. The lipid pen was carefully removed from around the sections using a cotton swab

dipped in xylol. One drop of fluorescent mounting medium (Dako) was added to each

section before a cover slip was applied.

2.6.5 Microscopy and image preparation

Bright field images of DAB-immunostained tissues were acquired using an Olympus

BX51 microscope equipped with an Olympus DP-50 camera (Olympus). For fluorescently-

labeled samples, epi-fluorescent images were taken by employing the mercury arc lamp
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and filter cube set included in the BX51 system. Images were processed using the ImageJ

(v1.41; NIH) and Photoshop CS3 (Adobe) software packages. Only adjustments in bright-

ness and contrast were made, and these changes in no way misrepresented the content of

the original images.

2.6.6 Plaque load analysis

Extracellular Aβ plaque load was calculated from serial images of the cortex (100x

magnification) taken from sagittal brain sections spaced a minimum of 20 µm apart. Four

sections were evaluated per animal (n = 5-7 per group). Images were converted into

an 8-bit black-and-white format using ImageJ. Image thresholds were then set to a fixed

value to define the DAB-stained plaque regions. Thresholds were selected to maximize the

plaque area detected while minimizing the contribution of intracellular Aβ accumulations

to the measurement. Plaque load was calculated as the percentage area occupied by Aβ

immunostaining.

2.7 Data analysis

Differences between groups were evaluated using either one-way, two-way or repeated

measures analysis of variance (ANOVA). These analyses were followed by Bonferroni post-

hoc tests, paired t-tests or unpaired t-tests, as indicated. All statistical calculations were

performed using GraphPad Prism (v5.0; GraphPad Software, Inc.) Data are presented as

mean ± standard error of the mean (SEM).
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Results

3.1 Project I: Generation and characterization of the

TBA42 mouse model

The pathological impact of AβpE accumulation has been demonstrated in several AD

mouse models. Among these are the TBA2 and TBA2.1/2.2 transgenic mouse lines.

TBA2/2.1/2.2 mice neuronally express an N-terminally truncated version of Aβ. The first

two amino acids of the Aβ peptide sequence are deleted, and the glutamate at position

three is mutated into a glutamine (Aβ3Q−42). This modified Aβ peptide is fused to the

murine thyrotropin-releasing hormone (TRH) single peptide sequence in order to route

it through the secretory pathway. Together, these alterations facilitate the conversion of

Aβ3Q−42 to AβpE3−42 by QC (Schilling et al., 2004; Cynis et al., 2006).

Unfortunately, the phenotype and the genetics of the TBA2/2.1/2.2 mouse lines hinder

their ability to be bred with other transgenic mouse models. In order to overcome these

weaknesses, we created a new mouse model designed to generate AβpE3−42 (TBA42). The

objective of this project was to characterize the TBA42 line on the neuropathological and

behavioral levels. It was found that the heterozygous expression of the TBA4 transgene

was sufficient to induce Aβ/AβpE3−42 accumulation and age-dependent behavioral deficits

in TBA42 mice without premature lethality.

3.1.1 Selection of the TBA42 mouse line

To generate the TBA4 mouse lines, the TBA4 transgene (Fig. 3.1) was microinjected

into the pronuclei of fertilized C57BL/6J oocytes. PCR-based genotyping of the resulting
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Figure 3.1: The TBA4 transgene. The murine Thy1 promoter drives the neuronal
expression of the pre-pro-TRH-Aβ3Q−42 fusion peptide. An N-terminal signal sequence
directs the pre-pro-TRH-Aβ3Q−42 fusion peptide into the ER where signal peptidases
liberate the pro-TRH-Aβ3Q−42 peptide. Prohormone convertases in the trans-Golgi and
secretory vesicles cleave the remainder of the TRH signal peptide to release Aβ3Q−42. The
free Aβ N-terminus can then undergo cyclization by glutaminyl cyclase to form AβpE3−42.
Figure modified from (Alexandru et al., 2011)

progeny identified three mice that carried the TBA4 transgene. These mice served as the

founders for three independent TBA4 lines: TBA41, TBA42 and TBA45. Breeding each

of the founder mice produced offspring positive for the TBA4 transgene, indicating stable

genomic integration and germline transmission of the transgenic construct.

To determine which TBA4 line possessed the highest transgene expression, qPCR was

performed on brain-derived cDNA from the F1 generation of TBA41, TBA42, and TBA45

mice. Analysis revealed that transgene levels were significantly higher in the brains of

TBA42 mice relative to mice from both the TBA41 and TBA45 lines (Fig. 3.2; p < 0.05).

No significant difference in transgene levels was found between the TBA41 and TBA45

mice. As a result, the TBA42 mouse line was selected for further characterization.
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.

Figure 3.2: Transgene levels in
TBA4 mice. qPCR-based measure-
ment of TBA4 transgene cDNA de-
rived from the brains of 2-to-4-month-
old TBA 41, TBA45 and TBA42 mice.
Transgene expression was highest in the
TBA42 mice. In all cases, TBA4 trans-
gene levels were normalized to β-actin
expression. One-way ANOVA with Bon-
ferroni post-hoc tests; *, p<0.05. Ab-
breviation: a.u., arbitrary units.

3.1.2 Amyloid beta accumulation in TBA42 mice

Transgene expression was assessed in TBA42 mice using immunohistochemistry. By

employing the pan-Aβ antibody 4G8, substantial Aβ accumulation was identified in the

hippocampus of TBA42 mice from the age of 3 months (Fig. 3.3 A). These aggregates

were comprised of both intracellular Aβ in the pyramidal neurons of the CA1 region as

well as small extracellular granules (Fig. 3.3 B). A similar staining pattern was found

with an antibody directed against the C-terminus of Aβx−42 (Fig. 3.3 C).

Outside of the hippocampus, Aβ was found in the inferior colliculus, brainstem and

cortex of 3-month-old TBA42 mice. In the inferior colliculus, Aβ primarily accumulated

inside neuronal cell bodies, with few extracellular granules observed. Aβ deposition ap-

peared to extend into the processes of some neurons in this region (Fig. 3.3 D). Brainstem-

localized Aβ was found both intraneuronally and in larger, extracellular aggregates (Fig.

3.3 E). Sparse Aβ deposition was seen in the cortex, with intraneuronal accumulations

and extracellular granules infrequently detected (Fig. 3.3 F).

In older TBA42 mice, Aβ accumulations were also prominent in other regions of the

CNS. Six-month-old TBA42 mice possessed substantial intraneuronal Aβ in their cere-

bellar nuclei (Fig. 3.4 A and B). In addition, occasional intraneuronal Aβ aggregates

and extracellular granules were seen in the spinal cords of mice at this age (Fig. 3.4 C).

Spinal cord Aβ pathology noticeably increased in 12-month-old TBA42 mice, occupying

a significant portion of the grey matter (Fig. 3.4 D). Both intraneuronal Aβ aggregates

and extracellular granules were more prevalent than in 6-month-old TBA42 mice (Fig. 3.4

E). Intraneuronal Aβ in the spinal cords of 12-month-old TBA42 mice frequently adopted

a punctate pattern, suggesting that it was sequestered into intracellular compartments

(Fig. 3.4 F). Despite the abundance of intracellular Aβ, no neuritic amyloid plaques were

found in TBA42 mice at any of the ages analyzed.

Since TBA42 mice were designed to produce pyroglutamate-modified Aβ, 2-48, an
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Figure 3.3: Aβ aggregation in 3-month-old TBA42 mice. TBA42 mice accumu-
lated abundant intracellular Aβ in CA1 pyramidal neurons by 3 months of age. These
accumulations were detected using both an antibody recognizing all Aβ isoforms (4G8; A
and B, arrowheads) and an antibody specific for the C-terminus of Aβx−42 (G2-11; C, ar-
rowhead). Small, extracellular Aβ granules were also seen in the hippocampus (B and C,
arrows). Aβ is mainly deposited intraneuronally in the inferior colliculus (D, arrowheads),
while both extracellular (E, arrow) and intraneuronal (E, arrowhead) Aβ aggregates were
found in the brainstem. Scarce intraneuronal Aβ deposits were observed in the cortex (F,
arrowhead). Scale bars, A = 200 µm; B-F = 50 µm.

antibody specific for AβpE3−x, was used to assess the presence of this peptide. By the age

of three months, TBA42 mice developed small, extracellular AβpE-positive granules in the

hippocampus (Fig. 3.5 A) and inferior colliculus (Fig. 3.5 B). Extracellular granules and

intracellular AβpE accumulations were also identified in the brainstems of 3-month-old

TBA42 mice. These deposits were specific to TBA42 mice; three-month-old WT mice

lacked a similar staining pattern (Fig. 3.5 D). In 12-month-old TBA42 mice, extracellular

and intracellular deposits of AβpE had also formed in the spinal cord (Fig. 3.5 E) and the

cortex (Fig. 3.5 F).

3.1.3 Gliosis in TBA42 mice

Gliosis frequently accompanies Aβ plaque pathology in the brains of both AD patients

and AD mouse models. Given the lack of neuritic plaques in the brains of TBA42 mice, it
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Figure 3.4: Aβ aggregation in 6- and 12-month-old TBA42 mice. Six-month-old
TBA42 mice showed marked intraneuronal Aβ accumulation in cerebellar nuclei (A and
B, arrowheads). Sparse intraneuronal (C, arrowhead) and extracellular (C, arrow) Aβ
aggregates were also found in the spinal cords of TBA42 mice at this age. In 12-month-
old TBA42 mice, Aβ pathology covered a large area of the spinal cord grey matter (D).
Both intraneuronal (E, arrowheads) and extracellular (E, arrows) Aβ deposits increased
in the spinal cords of 12-month-old TBA42 mice, and punctate intraneuronal staining was
commonly observed (F). Scale bars, A and D = 200 µm; B, C and E = 50 µm; F = 20
µm.

might be presumed that gliosis is also absent. Immunohistochemical evaluation of brain

regions with marked intraneuronal Aβ accumulation revealed the presence of reactive

astrocytes in TBA42 mice. Relative to 3-month-old WT mice (Fig. 3.6 A), more GFAP-

positive astrocytes were found in the CA1 region of age-matched TBA42 mice (Fig. 3.6

B). The degree of gliosis was further increased in 12-month-old TBA42 mice (Fig. 3.6 C).

These findings suggest that gliosis is the consequence of ongoing Aβ accumulation and

neurodegenerative processes in TBA42 mice.

67



Chapter 3. Results

Figure 3.5: AβpE accumulation in TBA42 mice. Extracellular, AβpE-positive gran-
ules (arrows) developed in the hippocampus (A), inferior colliculus (B) and brainstem (C)
of 3-month-old TBA42 mice. Intracellular AβpE was also found in the brainstem of TBA42
mice at this age (C, arrowhead). AβpE staining was absent from the brainstems of a 3-
month-old WT mice (D). By the age of 12 months, TBA42 mice possessed intraneuronal
(arrowheads) and extracellular (arrow) AβpE deposits in the spinal cord (E) and cortex
(F). Scale bars, A-E = 50 µm; F = 20 µm.

Figure 3.6: Gliosis in TBA42 mice. GFAP-staining revealed fewer astrocytes in
the hippocampal CA1 region of 3-month-old WT mice (A) than in the same region of
age-matched TBA42 mice (B). CA1 gliosis was further increased in 12-month-old TBA42
mice (C). For all panels, GFAP staining appears in blue and Aβ staining in brown. Scale
bar = 100 µm.
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3.1.4 Intracellular localization of amyloid beta in TBA42 mice

The pronounced intraneuronal pathology in TBA42 mice prompted an examination of

the subcellular localization of Aβ. Immunofluorescent double-labeling showed no colocal-

ization of Aβ with trans-Golgi marker syntaxin 16 (Syn16), indicating that Aβ was not

retained in the trans-Golgi network (Fig. 3.7 A-D). However, Aβ colocalized with soluble

NSF attachment protein receptor (SNARE) protein Vti1b, thereby revealing the presence

of Aβ within late endosomes (Fig. 3.8 A-D). Additionally, both Aβ (Fig. 3.9 A-D) and

AβpE (Fig. 3.9 E-F) were found in lysosomes, as demonstrated by their colocalization

with cathepsin D (CatD). Taken together, these findings indicate that intracellular Aβ

resides within the endosomal-lysosomal system in TBA42 mice.

Figure 3.7: No colocalization of Aβ with Syn16 in TBA42 mice. Immunofluo-
rescent double-labeling of spinal cord tissue from 12-month-old TBA42 mice. Antibodies
against Aβ (4G8, red; A) and trans-Golgi marker Syn16 (Syn16, green; B) were used with
DAPI counterstaining (blue; C). Aβ failed to colocalize with Syn16 as demonstrated by
the lack of overlapping signal (yellow) in the merged spinal cord motor neuron images
(D). Scale bar = 20 µm.

Figure 3.8: Colocalization of Aβ with Vti1b in TBA42 mice. Immunofluorescent
double-labeling of brain tissue from 12-month-old TBA42 mice. Antibodies against Aβ
(4G8, red; A) and late-endosomal marker Vti1b (Vti1b, green; B) were used with DAPI
counterstaining (blue; C). Aβ colocalized with Vti1b as shown by the merged brainstem
neuron images (white arrows, yellow; D). Scale bar = 20 µm.
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Figure 3.9: Aβ and AβpE are found in the lysosomes of TBA42 mice. Antibod-
ies against Aβ (4G8, red; A), AβpE3−x (2-48, red; E) and lysosomal marker CatD (CatD,
green; B and F) plus DAPI counterstaining (blue; C and G) were used for fluorescent
double-labeling of 12-month-old TBA42 brain tissue. Merged brainstem neuron images
revealed the colocalization of Aβ and AβpE with CatD (white arrows, yellow; D and H).
Scale bar = 20 µm.

3.1.5 General physical assessment of TBA42 mice

Behavioral deficits and other physiological changes commonly occur in AD transgenic

mouse models. To determine if the Aβ pathology present in TBA42 mice was sufficient to

cause functional impairments, cohorts of 3-, 6- and 12-month-old female TBA42 mice were

subjected to a basic physical examination and a battery of behavioral tests. The clasping

test has been used with other AD mouse models to screen for motor deficits resulting

from spinal cord pathology (Wirths et al., 2008; Jawhar et al., 2012). For this test, mice

are suspended from their tails for 30 sec and scored on a scale from 0 to 3, depending

on the limb clasping behavior they demonstrate. Healthy mice generally do not clasp

their limbs and will attempt to escape the tail suspension by kicking and twisting their

bodies. Three, 6- and 12-month-old TBA42 mice all displayed no limb clasping during

tail suspension (score 0). Instead, hindlimb rigidity and tremors were observed in lieu of

the normal escape behavior. This phenotype was present in TBA42 mice at 6 months of

age and progressed in severity by the age of 12 months.

Weight loss can also accompany the degenerative phenotype in AD mouse models. The

body weight of TBA42 mice was therefore measured at 3, 6, and 12 months of age. Relative

to age-matched WT controls, there was no difference in the weight of 3- and 6-month-old

TBA42 mice. In contrast, 12-month-old TBA42 mice were significantly lighter than their

70



Chapter 3. Results

Figure 3.10: TBA42 body weight.
TBA42 mice displayed normal body
weight at 3 and 6 months of age. Twelve-
month-old TBA42 mice were significantly
lighter than age-matched WT controls.
Two-way ANOVA with Bonferroni post-
hoc tests; ***, p < 0.001; n = 8-12 per
group.

age-matched WT counterparts (Fig. 3.10; p < 0.001). These findings suggest that the

neuropathology present in TBA42 mice adversely affects basic physiological function in

an age-dependent fashion.

3.1.6 Motor function in TBA42 mice

Motor function was further evaluated using the balance beam, string suspension and

inverted grip hang tasks. The balance beam assesses balance and general motor ability

(Arendash et al., 2001). In this task, TBA42 mice performed equivalently to WT controls

until the age of 12 months, at which point they showed significant impairment (Fig. 3.11

A; p < 0.001). The string suspension test evaluates motor coordination and grip strength

(Moran et al., 1995). As with the balance beam, only 12-month-old TBA42 mice displayed

significant deficits in string suspension performance (Fig. 3.11 B; p < 0.001). The inverted

grip hang was used to gauge vestibular function and muscle strength (Erbel-Sieler et al.,

Figure 3.11: Age-dependent alterations in motor function in TBA42 mice.
TBA42 mice displayed significantly reduced performance in the balance beam (A) and
string suspension (B) at 12 months of age. Impairment in the inverted grip hang task
was first observed in 6-month-old TBA42 mice and became more severe by the age of 12
months (C). Two-way ANOVA with Bonferroni post-hoc tests; ***, p < 0.001; n = 8-12
per group.
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2004). Three-month-old TBA42 mice behaved comparably to WT controls in this task.

However, the performance of 6- and 12-month-old TBA42 mice was substantially worse

than WT mice (Fig. 3.11 C; p < 0.001).

3.1.7 Working memory in TBA42 mice

To measure working memory in TBA42 mice, spontaneous alternation tasks of varying

complexity were utilized. Such tests are often conducted in three- or four-arm mazes and

rely on the innate tendency of mice to explore novel environments. Cognitively normal

mice exhibit a high degree of alternation behavior: they travel between the maze arms,

visiting each arm in succession before returning to a previously entered arm. Conversely,

AD transgenic mice often display a decreased alternation rate.

The Y- and cross mazes were employed to evaluate working memory in 3-, 6- and

12-month-old TBA42 mice. In the Y-maze, no difference in alternation rate was found

between WT and TBA42 mice at any of the ages tested (Fig. 3.12 A). Using the cross

maze, a significant decrease in alternation rate was detected in 12-month-old TBA42 mice

relative to WT controls (Fig. 3.12 C; p < 0.001). Differences in motor function did not

account for changes in alternation rate; WT and TBA42 mice performed a similar number

of arm entries in both the Y- (Fig. 3.12 B) and cross mazes (Fig. 3.12 D).

3.1.8 Anxiety and exploratory behavior in TBA42 mice

Anxiety and exploratory behavior were analyzed with the elevated plus maze and open

field, respectively. From the age of 3 months, TBA42 mice spent significantly more time

in the open arms of the elevated plus maze, indicating decreased anxiety (Fig. 3.13 A;

p < 0.01 at 6 mon; p < 0.001 at 3 and 12 mon). No difference in overall activity in the

elevated plus maze was seen between WT and TBA42 mice at any age (Fig. 3.13 B). The

total distance traveled in the open field also did not differ between 3-, 6- and 12-month-old

WT and TBA42 mice (Fig. 3.14 A). However, at all ages examined, the number of rearing

episodes displayed during open field exploration was significantly lower in TBA42 mice

compared to WT controls (Fig. 3.14 B; p < 0.01 at 3 mon; p < 0.001 at 6 and 12 mon).
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Figure 3.12: Age-dependent deficits in working memory in TBA42 mice. No
differences in alternation rate (A) or number of arm entries (B) were found between TBA42
and WT mice in the Y-maze. Twelve-month-old TBA42 mice displayed a decreased
alternation rate in the cross maze compared to WT controls (C). There was no difference
between TBA42 and WT mice in the number of arm entries performed in the cross maze
(D). Two-way ANOVA with Bonferroni post-hoc tests; ***, p < 0.001; n = 8-12 per
group.
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Figure 3.13: Decreased anxiety in TBA42 mice. TBA42 mice spent more time in
the open arms of the elevated plus maze than WT controls at all ages tested (A). WT and
TBA42 mice exhibited similar levels of activity in the elevated plus maze, as indicated
by total distance traveled (B). Two-way ANOVA with Bonferroni post-hoc tests; **, p <
0.01; ***, p < 0.001; n = 8-12 per group.

Figure 3.14: Exploratory behavior in TBA42 mice. In the open field, TBA42 mice
traveled comparable distances to WT controls at all ages analyzed (A). Rearing behavior
in the open field was decreased in the TBA42 mice beginning from the age of 3 months
(B). Two-way ANOVA with Bonferroni post-hoc tests; **, p < 0.01; ***, p < 0.001; n =
8-12 per group.
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3.2 Project II: Exploring the pyroglutamate-modified

amyloid beta seeding hypothesis using the FAD42

mouse model

Previous studies have utilized either pharmacological inhibition or genetic manipu-

lation of QC to directly affect the generation of AβpE in transgenic AD mouse models

(Schilling et al., 2008c; Jawhar et al., 2011b). The aim of the present study was to in-

vestigate how additional AβpE impacts the progression of AD pathology independent of

QC manipulations. To accomplish this, TBA42 transgenic mice (see Section 3.1) were

crossed with the well-established 5XFAD mouse model to produce FAD42 mice. 5XFAD

mice possess a robust neuropathological phenotype: they develop age-dependent behav-

ioral deficits, axonopathy, neuron loss and extensive plaque pathology (Oakley et al.,

2006; Jawhar et al., 2012). The effects of elevated AβpE3−42 on behavioral phenotype,

co-precipitation of other Aβ variants and plaque load pathology were evaluated in FAD42

transgenic mice. Taken together, these results demonstrate that an increase in AβpE3−42

can adversely affect the strong AD phenotype of 5XFAD mice.

3.2.1 Behavioral analysis of FAD42 mice

To evaluate the effects of additional AβpE3−42 on the behavioral phenotype of 5XFAD

mice, 6-month-old female WT, 5XFAD, TBA42 and FAD42 mice were tested in the bal-

ance beam and elevated plus maze. Motor performance was significantly impaired in the

FAD42 mice, as shown by the balance beam (Fig. 3.15 A; p < 0.001). In addition, the

elevated plus maze revealed that anxiety levels were even further decreased in FAD42

mice (Fig. 3.15 B; p < 0.001). These data indicate that the extra Aβ resulting from

the TBA42 transgene in the FAD42 mice is sufficient to enhance the behavioral deficits

observed in 5XFAD single transgenic mice.
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Figure 3.15: Aggravated behavioral impairments in FAD42 mice. Motor func-
tion and anxiety were assessed in 6-month-old WT, 5XFAD, TBA42 and FAD42 mice
using the balance beam (A) and elevated plus maze (B), respectively. In both tasks, trans-
genic FAD42 mice showed increased impairment relative to the WT and single transgenic
5XFAD and TBA42 mice. One-way ANOVA with Bonferroni post-hoc tests; ***, p <
0.001; n = 5-9 per group.

3.2.2 Immunoprecipitation and mass spectrometric (IP/MS) char-

acterization of wild-type, TBA42, 5XFAD and FAD42 mouse

brain

IP/MS was employed to determine if the additional AβpE3−42 from the TBA42 trans-

gene altered the profile of Aβ precipitated from brains of FAD42 mice. Combined IP with

the 6E10 and 4G8 antibodies revealed an Aβ isoform pattern consisting of Aβ5−42, Aβ4−42,

Aβ1−40, and Aβ1−42 in the FA-extracted brain tissues from 5XFAD mice (See Fig. 3.16 A

for representative mass spectra). The most dominant isoform was the peak representing

Aβ1−42. A similar pattern was detected in the transgenic model FAD42. TBA42 mice

displayed no peaks corresponding to Aβ following IP with 6E10 and 4G8. IP with the N-

terminal-specific Aβ antibody 1-57 detected AβpE3−42 and unmodified Aβ3−42 in TBA42,

5XFAD and FAD42 mice. In all cases, unmodified Aβ3−42 was much less abundant than

AβpE3−42. AβpE3−40 was only identified in 5XFAD mice. No peaks corresponding to Aβ

were detected in WT mice using either the 4G8 and 6E10 or the 1-57 antibodies. These

results confirm that 5XFAD mice harbor a heterogeneity of N-truncated and modified Aβ

peptides, but TBA42 mice express only AβpE3−42 and unmodified Aβ3−42. Furthermore,

aside from the loss of the minor AβpE3−40 peak, no gross difference in the pattern of Aβ

variants isolated after IP was found between 6-month-old 5XFAD and FAD42 mice.
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Figure 3.16: N-terminal heterogeneity of Aβ peptides in 5XFAD and FAD42
mice. Mass spectra of Aβ peptides immunoprecipitated from the brains of WT, TBA42,
5XFAD and FAD42 mice. Pan-Aβ antibodies 6E10 and 4G8 (A; used as a mix) and the
N-terminal-specific antibody 1-57 (B), recognizing both AβpE3−x and unmodified Aβ3−x
peptides, were used for IP. The dominant Aβ fraction in 5XFAD and FAD42 mice was
Aβ1−42 (A, left), followed by Aβ1−40, AβpE3−42, Aβ4−42, AβpE3−40 and Aβ3−42. There was
no significant difference in the Aβ pattern between 5XFAD and FAD42 mice (A, right).
Using the 1-57 antibody for IP, N-terminally truncated AβpE3−42 was the major peptide
detected in 5XFAD, FAD42 and TBA42 mice; AβpE3−40 was only observed in 5XFAD
mice (B). No Aβ was found in WT mice. Sample preparation and IP/MS were carried
out by the group of Erik Portelius and Kaj Blennow at the University of Gothenburg,
Sweden. Abbreviation: a.u., arbitrary units.
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3.2.3 Localization of cortical amyloid beta in 5XFAD and TBA42

mice

5XFAD mice develop substantial plaque pathology and intraneuronal Aβ in the fifth

layer of the cortex (Oakley et al., 2006; Jawhar et al., 2012). In contrast, intracellular and

extracellular Aβ accumulation is limited in TBA42 mice (See Section 3.1.2). Immunoflu-

orescent double-labeling was therefore employed to confirm that Aβ deposition occurs in

overlapping anatomical regions in the TBA42 and 5XFAD mice. Using antibodies against

neuronal-marker NeuN (Fig. 3.17 A and E) and Aβ (Fig. 3.17 B and F), intracellular Aβ

was identified in the cortical neurons of 6-month-old 5XFAD (Fig. 3.17 D) and TBA42

mice (Fig. 3.17 H). These findings support the notion that the cortical Aβ pathology

resulting from the 5XFAD and TBA42 transgenes could interact in the FAD42 mice.

3.2.4 Analysis of cortical plaque load in 5XFAD and FAD42

mice

To assess the impact of additional AβpE3−42 on total Aβ deposition, cortical plaque

load was measured in 6-month-old 5XFAD and FAD42 mice. A significant increase in the

ratio of AβpE3−x to Aβ1−x plaque area was observed between 5XFAD (0.93 ± 0.1; Fig.

3.18 A, C and G) and FAD42 mice (1.5 ± 0.12; Fig. 3.18 D, F and G; p < 0.01). The

ratio of Aβx−42 to Aβ1−x plaque area remained unchanged (5XFAD, 1.7 ± 0.23; Fig. 3.18

B, C and G; FAD42, 2.56 ± 0.52; Fig. 3.18 E-G). These data indicate that the additional

AβpE3−42 in FAD42 mice enhances seeding and increases plaque deposition relative to

5XFAD mice. No obvious changes in cortical intraneuronal Aβ were detected between

5XFAD and FAD42 mice (Fig. 3.19).
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Figure 3.17: Intraneuronal Aβ in the cortices of 6-month-old TBA42 and
5XFAD mice. Immunofluorescent double-labeling was performed on the brains of 6-
month-old 5XFAD (A-D) and TBA42 (E-H) mice using antibodies against NeuN (A and
E) and pan-Aβ (24311; B and F) plus DAPI counterstaining (C and D). Aβ was found
within cortical neurons in both 5XFAD (white arrows, yellow; D) and TBA42 mice (white
arrows, yellow; H). Scale bar = 20 µm.

79



Chapter 3. Results

Figure 3.18: Elevated plaque
pathology in the cortices of FAD42
mice. Immunostaining of 5XFAD (A-C)
and FAD42 mice (D-F) with AβpE3−x-
specific antibody 2-48 (A, D), C-terminal
specific antibody G2-11 against Aβx−42

(B, E) and N-terminal specific antibody
Aβ[N] against Aβ1−x (C, F). There
was a significant difference between the
plaque load of 5XFAD and FAD42 mice
expressed as a ratio of antibody 2-48 to
antibody Aβ[N] (G). No difference was
found in the ratio of G2-11 to Aβ[N].
One-way ANOVA and unpaired t-test; **,
p < 0.01. Abbreviation: a.u., arbitrary
units. Scale bar = 200 µm.

Figure 3.19: No change in cortical intraneuronal Aβ in FAD42 mice. FAD42
mice did not show evidence for increased intraneuronal Aβ accumulation in the cortex
compared to 5XFAD mice at 6 months of age. Immunostaining against Aβ (4G8) in
5XFAD (A) compared to FAD42 mice (B). (A‘) and (B‘) represent magnifications of A
and B. Scale bars, A and B = 100 µm; A‘ and B‘ = 50 µm.
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3.2.5 Measurement of soluble and insoluble amyloid beta in

TBA42, 5XFAD and FAD42 mice

To quantify different pools of Aβ, frozen brains from 6-month-old 5XFAD, TBA42

and FAD42 mice were subjected to sequential protein extractions in TBS- and SDS-based

buffers. ELISA was then used to measure levels of soluble (TBS) and insoluble (SDS)

Aβx−42 and AβpE3−x (mass Aβ/g brain). Levels of TBS-soluble Aβx−42 were significantly

higher in 5XFAD (162.8 ± 22.2 (ng/g)) and FAD42 mice (154.7 ± 13.8 (ng/g)) than in

TBA42 mice (8.2 ± 0.4 (ng/g); Fig. 3.20 A; p < 0.001). Similarly, in the SDS-fraction,

5XFAD (32,032 ± 13,803 (ng/g)) and FAD42 mice (31,771 ± 14,234 (ng/g)) had more

Aβx−42 than TBA42 mice (11 ± 0.5 (ng/g); Fig. 3.20 C). TBS-soluble AβpE3−x levels

were substantially higher in FAD42 mice (238.4 ± 67.8 pg/g) than in TBA42 mice (51.25

± 7.5 pg/g; p < 0.05) and elevated relative to 5XFAD mice (141 ± 28.5 pg/g; Fig. 3.20

B). Notably, the amount of SDS-soluble AβpE3−x was significantly higher in FAD42 mice

(29,061 ± 2,805 pg/g) in comparison to both TBA42 (3,714 ± 485 pg/g; p < 0.001) and

5XFAD mice (15,826 ± 1,547 pg/g; p < 0.01). Significant differences in the levels of

SDS-soluble AβpE3−x were also observed between TBA42 and 5XFAD mice (p < 0.01;

Fig. 3.20 D).

3.2.6 Glutaminyl cyclase activity in wild-type, TBA42, 5XFAD

and FAD42 mouse brain

QC is the major enzyme implicated in the formation of AβpE, and its expression is

upregulated in the brains of AD patients (Cynis et al., 2006; Schilling et al., 2008b). To

determine how the pathology present in 6-month-old TBA42, 5XFAD and FAD42 mice

influenced the catalytic function of QC, an enzyme activity assay was performed. As

expected, QC activity was increased in the brain lysates of TBA42 (p < 0.05), 5XFAD (p

< 0.05) and FAD42 (p < 0.01) mice relative to WT controls (Fig. 3.21). No significant

difference in QC activity was found between TBA42, 5XFAD and FAD42 mice. However,

there was a strong trend toward increased QC activity in FAD42 mice.
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Figure 3.20: Increased levels of AβpE3−x in the brains of FAD42 mice as shown
by ELISA. 5XFAD and FAD42 mice demonstrated elevated Aβx−42 levels in the TBS- (A)
and SDS- (C) soluble brain fractions compared to TBA42 mice. There was no significant
difference in Aβx−42 levels between 5XFAD and FAD42 mice for either fraction. In all
mouse lines, the Aβx−42 SDS-soluble fraction contained the most Aβ peptide. The levels
of TBS-soluble AβpE3−x were significantly higher in FAD42 mice compared to TBA42
mice (B). Substantially more SDS-soluble AβpE3−x was detected in FAD42 mice relative
to both 5XFAD and TBA42 mice (D). ELISA measurements were performed by the group
of Stephan Schilling and Hans-Ulrich Demuth at Probiodrug AG in Halle, Germany. One-
way ANOVA with Bonferroni post-hoc tests; *, p < 0.05; **, p < 0.01; ***, p < 0.001.
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Figure 3.21: Increased QC activity
in FAD42 mouse brain. Significantly
increased QC activity was observed in
TBA42, 5XFAD and FAD42 mice com-
pared to WT controls. There was an in-
significant trend toward higher QC activ-
ity in FAD42 mice relative to TBA42 and
5XFAD mice. QC activity measurements
were performed by the group of Stephan
Schilling and Hans-Ulrich Demuth at Pro-
biodrug AG in Halle, Germany. One-way
ANOVA with Bonferroni post-hoc tests;
*, p < 0.05; **, p < 0.01.

3.3 Project III: Generation and characterization of

the TBA83 mouse model

The majority of AD mouse models rely on the overexpression of APP and/or PS1 to

replicate aspects of AD pathology (Duyckaerts et al., 2008). While this approach results

in mice that display behavioral deficits, gliosis and amyloid pathology, it creates a genetic

situation never found in AD patients. Aβ4−42 represents a major N-terminally truncated

Aβ species found in AD brain (Portelius et al., 2010). However, little is known about

the contribution of this peptide to the progression of AD. We therefore aimed to create

a transgenic mouse model that would allow us to study the physiological consequences of

Aβ4−42 expression in vivo while avoiding overexpression of mutant APP and/or PS1.

To accomplish this, the TBA8 transgenic mouse lines were developed. TBA8 mice

neuronally express Aβ4−42 fused to the murine TRH signal peptide (Fig. 3.22). As with

the TBA42 mice (see Section 3.1), the TBA8 construct was designed to route Aβ through

the secretory pathway and allow for its extracellular release. However, aside from the

removal of the TRH signal peptide, the Aβ4−42 produced by TBA8 mice does not need to

undergo additional enzymatic modifications to reach its final form.

The objective of the present study was to generate and characterize a transgenic mouse

model exclusively expressing Aβ4−42 (TBA83). Although amyloid pathology is mild in

these mice, it is still capable of inducing behavioral impairments.

3.3.1 Selection of the TBA83 mouse line

To create the TBA8 transgenic construct, mutagenesis was performed on the TBA4

construct to delete the glutamine at position 3 of the Aβ sequence. This procedure thereby
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Figure 3.22: TBA8 transgene. The murine Thy1 promoter drives the neuronal
expression of the pre-pro-TRH-Aβ4−42 fusion peptide. An N-terminal signal sequence
directs the pre-pro-TRH-Aβ4−42 fusion peptide into the endoplasmic reticulum where
signal peptidases liberate the pro-TRH-Aβ4−42 peptide. Prohormone convertases in the
trans-Golgi and secretory vesicles cleave the remainder of the TRH signal peptide to
release Aβ4−42 and allow for its extracellular secretion. Figure modified from (Alexandru
et al., 2011).

made the phenylalanine at position 4 the N-terminal amino acid of the Aβ sequence.

Following sequencing and purification, the TBA8 transgene was microinjected into the

pronuclei of fertilized C57BL/6J oocytes. PCR-based genotyping of the resulting progeny

identified seven mice that carried the TBA8 transgene. Six of these mice served as the

founders for independent TBA8 lines: TBA80, TBA81, TBA82, TBA83, TBA86 and

TBA88. Following breeding, it was revealed that only the TBA82, TBA83, TBA86 and

TBA88 founders produced offspring positive for the TBA8 transgene. The TBA80 and

TBA81 lines were thus discontinued due to lack of stable germline transmission of the

transgene.

Quantitative PCR was performed on brain-derived cDNA from the F1 generations of

TBA82, TBA83, TBA88 and TBA86 mice to determine which line produced the highest

transgene expression. Analysis showed that transgene levels were significantly greater in

TBA83 mice relative to the other TBA8 lines (Fig. 3.23; p < 0.05 vs. TBA86 and TBA88;

p < 0.01 vs. TBA82). No significant difference in transgene levels was identified between

the TBA82, TBA86 and TBA88 lines. As result, the TBA83 mouse line was selected for

further characterization.
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Figure 3.23: Transgene levels in
TBA8 mice. qPCR measurement
of TBA8 transgene cDNA derived from
the brains of 2- to 4-month-old TBA82,
TBA83, TBA86 and TBA88 mice. Trans-
gene expression was highest in the TBA83
mice. In all cases, TBA8 transgene lev-
els were normalized to β-actin expression.
One-way ANOVA with Bonferroni post-
hoc tests; *, p<0.05; **, p<0.01. Abbre-
viation: a.u., arbitrary units.

3.3.2 Amyloid beta accumulation in TBA83 mice

Transgene expression was analyzed in TBA83 mice using immunohistochemistry. Stain-

ings with the pan-Aβ antibody 24311 revealed both intraneuronal and small, extracellular

Aβ granules in the CA1 region of the hippocampus in 4-month-old TBA83 mice (Fig. 3.24

A). By the age of 12 months, mainly larger, extracellular aggregates were found in the

hippocampus (Fig. 3.24 D). Intraneuronal and extracellular Aβ were also observed in

the spinal cord of 4-month-old TBA83 mice (Fig. 3.24 B). Spinal cord pathology was

increased in 12-month-old TBA83 mice, as demonstrated by a greater number of extra-

cellular Aβ accumulations and more prominent intraneuronal staining (Fig. 3.24 E). As

in the hippocampus, intraneuronal and extracellular deposits were initially observed in

the inferior colliculus and brainstem of 4-month-old TBA83 mice (Fig. 3.24 C). However,

in 12-month-old TBA83 mice, predominantly extracellular aggregates were seen in these

regions (Fig. 3.24 F).

3.3.3 Gliosis in TBA83 mice

Fluorescent immunohistochemistry was used to assess gliosis in 4- and 12-month-old

TBA83 mice. Reactive astrocytes were identified in areas accumulating Aβ, as shown by

labeling with a GFAP antibody. Gliosis was present in the CA1 region of the hippocampus

in 4-month-old TBA83 mice (Fig. 3.25 A-C). TBA83 mice displayed an apparent increase

in glial pathology in the CA1 region at the age of 12 months (Fig. 3.25 D-F).
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Figure 3.24: Aβ aggregation in 4- and 12-month-old TBA83 mice. Using the
pan-β antibody 24311, Aβ accumulations were detected both intraneuronally (arrow-
heads) and extracellularly (arrows) in 4- (A-C) and 12-month-old (D-E) TBA83 mice.
Aβ aggregates were identified in the CA1 region of the hippocampus (A and D), spinal
cord (B and E), inferior colliculus (C and F), and brainstem (not shown). Scale bar = 50
µm.

Figure 3.25: Gliosis in TBA83 mice. Fluorescent immunohistochemistry was per-
formed on the brains of 4- (A-C) and 12-month-old (D-F) TBA83 mice using a GFAP
antibody (green; A and D) and DAPI counterstaining (blue; B and E). There was a visible
increase in gliosis between mice at the ages of 4 (C) and 12 months (F). Scale bar = 100
µm.
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3.3.4 General physical assessment and motor function in TBA83

mice

Physical examination of TBA83 mice revealed no gross abnormalities. No clasping

behavior or tremor was observed upon tail suspension, and there was no difference in

body weight between WT and TBA83 mice at 4 months of age (Fig. 3.26). Cohorts of 3-

4, 6-7 and 11-12-month-old female TBA83 mice were subjected to a battery of behavioral

tests. As with TBA42 mice, the balance beam, string suspension and inverted grip hang

tasks were used to measure various aspects of motor function. Three-4-month-old and

6-7-month-old TBA83 mice performed comparably to WT controls in the balance beam

test. However, 11-12-month-old mice were significantly impaired (Fig. 3.27 A; p < 0.01).

TBA83 mice exhibited no deficits in the string suspension (Fig. 3.27 B) or inverted grip

hang tasks (Fig. 3.27 C) at any of the ages examined.

Figure 3.26: TBA83 body weight.
No difference in body weight was found
between 4-month-old WT and TBA83
mice. Unpaired t-test; n = 7-12 per group.

Figure 3.27: Subtle motor deficits in TBA83 mice. TBA83 mice showed a decline
in performance in the balance beam test (A) relative to WT controls at 11-12 months of
age. No deficits were found in the string suspension (B) or inverted grip hand tasks (C).
Two-way ANOVA with Bonferroni post-hoc tests; **, p < 0.01; n = 7-12 per group.
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3.3.5 Working memory in TBA83 mice

Working memory was evaluated in TBA83 mice using the Y- and cross maze tests. No

differences in alternation rate (Fig. 3.28 A) or the number of arm entries (Fig. 3.28 B)

were found between TBA83 and WT mice in the Y-maze. TBA83 mice also performed

similarly to WT controls in the cross maze, with no significant change in alteration rate

(Fig. 3.28 C) or number of arm entries (Fig. 3.28 D) being detected at any of the ages

examined.

Figure 3.28: Normal working memory in TBA83 mice. Y-maze performance was
unchanged between TBA83 and WT mice with respect to both alternation rate (A) and
the number of arm entries (B). In the cross maze, alternation rate (C) and the number of
arm entries (D) were also equivalent between WT and TBA83 mice. Two-way ANOVA
with Bonferroni post-hoc tests; n = 7-12 per group.

3.3.6 Anxiety and exploratory behavior in TBA83 mice

The elevated plus maze was used to measure basal anxiety in TBA83 mice. The time

spent in the open arms of the apparatus (Fig. 3.29 A) and the total distance traveled

during testing (Fig. 3.29 B) were unaltered between TBA83 and WT mice. Likewise,
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TBA83 mice displayed no changes in exploratory activity in the open field; both total

distance traveled (Fig. 3.30 A) and rearing behavior (Fig. 3.30 B) were comparable to

WT levels.

Figure 3.29: Unaltered anxiety levels in TBA83 mice. No changes in the per-
centage time spent in the open arms of the elevated plus maze (A) or the total distance
traveled on the apparatus during testing (B) were observed between WT and TBA83 mice
at any of the ages evaluated. Two-way ANOVA with Bonferroni post-hoc tests; n = 7-12
per group.

Figure 3.30: Unchanged exploratory behavior in TBA83 mice. There was no
significant difference between TBA83 and WT mice in the distance traveled (A) or the
number of rearing episodes (B) during testing in the open field. Two-way ANOVA with
Bonferroni post-hoc tests; n = 7-12 per group.

3.3.7 Spatial reference memory in TBA83 mice

Spatial reference memory was measured in 8-9-month-old WT and TBA83 mice using

the Morris water maze (MWM; see Section 2.2.9). Mice first underwent cued training
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with a marked platform to acclimate to the pool and rule-out confounding effects from

previously unidentified motor or sensory deficits. Both WT and TBA83 mice demon-

strated progressively shorter escape latencies in response to training. All mice were able

to reach the escape criterion of 10 sec after three consecutive training days (Fig. 3.31 A;

p < 0.0001 for time).

Figure 3.31: Impaired spatial reference memory in TBA83 mice. WT and
TBA83 mice displayed similar learning curves during both the cued (A) and acquisition
(B) phases of MWM training (p < 0.0001 for time). The probe test revealed deficits
in spatial references memory in TBA83 mice, as shown by their reduced preference for
the target quadrant (C). No differences in swimming speed between the TBA83 and WT
mice were detected during the probe trial (D). Representative swimming paths from WT
(E) and TBA83 mice (F) during the probe trial demonstrated different search strategies.
Abbreviations: T = target quadrant, L = left quadrant, R = right quadrant, O = opposite
quadrant; A and B, Two-way repeated measure ANOVA; C, paired t-tests; D, unpaired
t-test; *, p < 0.05; **, p < 0.01; n = 7-12 per group.

Twenty-four hours after the cued training phase, mice began acquisition training to

learn the location of a submerged platform. Again, escape latencies decreased for both

WT and TBA83 mice between each training day, and the mice achieved the 10 sec escape

criterion after the third day (Fig. 3.31 B; p < 0.0001 for time). Twenty-four hours after

the final acquisition trial, a probe test was performed to assess spatial memory retention.
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WT mice displayed a significant preference for the target quadrant, as indicated by the

percentage time spent in different quadrants of the pool (Fig. 3.31 C; p < 0.001 T vs.

all other quadrants). In contrast, the quadrant preference exhibited by TBA83 mice was

less pronounced (Fig. 3.31 C; p < 0.05 T vs. R quadrant). Swimming speed during

the probe test was not different between the two groups, indicating that altered motor

abilities could not account for the observed results (Fig. 3.31 D). Furthermore, a review

of the swimming paths revealed that WT mice employed a more precise search strategy

(Fig. 3.31 E) than TBA83 mice (Fig. 3.31 F).
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Discussion

4.1 Project I: Generation and characterization of the

TBA42 mouse model

AβpE is being increasingly recognized as a key contributor to AD pathology. Its bio-

chemical characteristics make it prone to aggregation and resistant to degradation (Saido

et al., 1996; Kuo et al., 1998). In addition, the in vivo toxicity of AβpE was demonstrated in

several conventional AD mouse models. Removal of AβpE through genetic manipulation,

inhibitor treatment or passive vaccination restored cognitive function and ameliorated

plaque pathology in various transgenic mice (Schilling et al., 2008b; Wirths et al., 2010b;

Jawhar et al., 2011a). Strikingly, exclusive neuronal generation of AβpE3−42 is sufficient to

create a robust neurodegenerative phenotype, as demonstrated by the TBA2, TBA2.1 and

TBA2.2 mouse models. While the previously characterized TBA mice provided valuable

insights into the pathophysiological consequences of AβpE accumulation, their usefulness

for more complex transgenic studies is limited. The strong cerebellar pathology found

in TBA2 mice caused neuron loss and motor abnormalities. As a result, the line was

unable to be maintained (Wirths et al., 2009). Conversely, no phenotype was reported in

heterozygous TBA2.1 and TBA2.2 mice. Pathology was only observed when mice were

bred to homozygosity or carried both the TBA2.1 and TBA2.2 transgenes (Alexandru

et al., 2011). Complicated breeding strategies would therefore be necessary to combine

symptomatic TBA2.1/2.2 mice with other transgenic lines.

The primary objective of the present study was to create a transgenic mouse line that

generates AβpE3−42 in the heterozygous state but does not possess a lethal phenotype. The

resulting TBA42 mice were then characterized on the neuropathological and behavioral
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levels. This allowed for confirmation of previous observations regarding AβpE toxicity and

the establishment of a useful model for further transgenic experiments.

4.1.1 TBA42 mice develop intraneuronal and sparse extracellu-

lar amyloid deposits

Like the TBA2, TBA2.1 and TBA2.2 mice, the TBA42 mouse model expresses an Aβ

fusion peptide. This construct consists of an N-terminally truncated Aβ1−42 sequence in

which the first two amino acids are removed and the glutamate normally at position three

is replaced by glutamine (Aβ3Q−42). A murine TRH signal peptide is fused to the Aβ

N-terminus. Prohormone convertases and signal peptidases in the secretory pathway lib-

erate the N-truncated Aβ, thereby permitting QC to catalyze the formation of AβpE3−42.

Previous use of this construct in both cell culture and the TBA2/2.1/2.2 mouse lines

demonstrated the efficaciousness of this conversion process (Cynis et al., 2006; Wirths

et al., 2009; Alexandru et al., 2011).

The regional accumulations of Aβ in heterozygous TBA42 mice occur in a pattern

consistent with transgene expression driven by the murine Thy1 promoter (Caroni, 1997).

Using a pan-Aβ antibody, intraneuronal Aβ was observed in the hippocampus, inferior

colliculus, brainstem and cortex of TBA42 mice beginning at the age of 3 months. Six-

month-old mice also developed aggregates in certain cerebellar and spinal cord neurons.

This pathology appeared to progress with age, as indicated by an increase in the number

of aggregates found in the spinal cord (see Section 3.1.2).

The distribution and extent of these Aβ deposits differed noticeably from those found

in the previously characterized TBA lines. Aβ staining was absent from cerebellar Purk-

inje neurons, precluding the development of the severe ataxic phenotype observed in TBA2

mice (Wirths et al., 2009). Likewise, hippocampal and brainstem pathology were less pro-

nounced than in Hom TBA2.1 mice. While the degree of Aβ accumulation did provoke

neuron loss, gliosis and paired-pulse inhibition deficits in the TBA2.1 model, it also re-

sulted in early, progressive motor dysfunction. The authors were therefore unable to

reliable detect cognitive deficits due to confounding motor symptoms (Alexandru et al.,

2011). As a result of the milder pathology that occurs in heterozygous TBA42 mice, this

model was able to be phenotyped and bred to another AD transgenic mouse line (see

Sections 3.1.5 - 3.2).

In addition to intraneuronal deposits, granular, extracellular Aβ aggregates were seen

in TBA42 mice. Alexandru and colleagues observed similar accumulations and attributed

them to disintegrated cells (Alexandru et al., 2011). Such a process may also occur in
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TBA42 mice. However, the size of some of these aggregates (e.g. Fig. 3.3 E) suggests

that they are not merely the product of a single cell lysis event. Wirths et al. observed

plaque-associated Aβ pathology in several brain regions of the TBA2 mouse, including the

hippocampus, cortex and superior colliculus. In this case, secreted Aβ was implicated in

forming such large extracellular deposits (Wirths et al., 2011). Given these findings, the

extracellular Aβ in TBA42 mice may be a product of both local neurodegeneration and

the aggregation of secreted, extracellular Aβ. Certain evidence suggests an intracellular

origin for amyloid plaques; decreases in intraneuronal Aβ were affiliated with increases in

plaque pathology in both human AD patients and transgenic mouse models (Gouras et al.,

2000; Cataldo et al., 2004; Christensen et al., 2008; Moon et al., 2012). Establishing a

correlation between intracellular and extracellular Aβ deposition in TBA42 mice warrants

further investigation.

Relative to the aggregates visualized by the pan-Aβ antibody, AβpE3−x accumulations

in TBA42 mice were much less pronounced. AβpE3−x-specific staining was observed in

areas known to harbor Aβ, and there was some evolution of this pathology over time.

Again, both intraneuronal and extracellular Aβ deposits were noted (see Fig. 3.5). A

similar situation was seen in the other TBA mouse models. For example, diffuse intra-

neuronal and extracellular AβpE were present in the hippocampal regions of Hom TBA2.1

mice and in the Purkinje neurons of TBA2 mice (Wirths et al., 2009; Alexandru et al.,

2011).

As mentioned earlier, QC is the enzyme primarily responsible for generating AβpE

(Cynis et al., 2006). QC expression may thus partially account for the location of AβpE

aggregates in the TBA2, TBA2.1 and TBA42 mouse lines. In WT mice, QC protein is

found in specific neuronal populations, such as the interneurons of the cortex and the pyra-

midal neurons of the hippocampus (Hartlage-Rubsamen et al., 2009). Aβ accumulated in

these cell types could therefore be more readily converted into AβpE. In line with this as-

sumption, immunohistochemical studies of pathologically vulnerable regions in AD brain

identified an overlap between neurons expressing QC and intraneuronal AβpE (Morawski

et al., 2010). Alternatively, cell culture studies demonstrated that QC undergoes axonal

transport and is constitutively secreted from neurons expressing it. These neurons could

presumably release QC at their distal synaptic terminals, thereby allowing the enzyme to

modify extracellular, N-terminally truncated Aβ (Hartlage-Rübsamen et al., 2011b).

Notably, the presence of AβpE correlates with neurodegenerative markers in each of

the TBA mouse lines. Quantification of neuronal numbers in the hippocampal CA1 region

confirmed a 35% neuron loss in 3-month-old Hom TBA2.1 mice (Alexandru et al., 2011).

In TBA2 mice, absence of calbindin, a marker for Purkinje neurons, and residual Aβ
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deposition indicated neurodegeneration (Wirths et al., 2009). While neuron loss was not

directly quantified in TBA42 mice, progressive astrocytosis occurred in areas with AβpE

pathology, such as the CA1 region of the hippocampus (see Section 3.1.3).

In summary, TBA42 mice display pathological features comparable to the TBA2 and

Hom TBA2.1 mouse lines. However, they produce a milder degree of Aβ accumulation

while still allowing for the effects of AβpE3−42 generation to be examined. As a result,

TBA42 mice are amenable to behavioral phenotyping and can be successfully bred with

other transgenic AD mouse models.

4.1.2 Intraneuronal amyloid beta found in the endosomal/ lyso-

somal system in TBA42 mice

TBA42 mice rely on the murine TRH signal peptide to route Aβ3Q−42 through the

neuronal secretory pathway. The enzymes responsible for removing the TRH sequence

consist of signal peptidases and prohormone convertases found in the trans-Golgi network

and secretory granules (Nillni, 2010). Transfection of an mTRH-Aβ3Q−42 construct into a

murine insulinoma cell line demonstrated the effective secretion of AβpE3−42 into the cell

culture media (Cynis et al., 2006). However, in vitro studies suggested that Aβ3Q−42 could

aggregate rapidly under the appropriate conditions (Pike et al., 1995b; Jarrett et al., 1993).

Thus, to rule-out the possibility of premature aggregation and intracellular retention of

Aβ3Q−42, the subcellular localization of Aβ was examined in TBA42 mice (see Section

3.1.4).

Immunofluorescent double-labeling was first performed using antibodies against pan-

Aβ and Syn16, a marker for the trans-Golgi. Syn16 is a member of the SNARE family

that participates in trans-Golgi network trafficking (Simonsen et al., 1998). Colocalization

of the pan-Aβ and Syn16 signals would indicate that Aβ was retained in the trans-Golgi

network following cleavage of the TRH signal peptide. However, no colocalization was

found, suggesting that the Aβ present in TBA42 mice was being appropriately trafficked

beyond the Golgi.

Amyloidogenic processing of APP occurs in the endosomal/lysosomal system (Thi-

nakaran and Koo, 2008). In line with this, examinations of brain tissue from both hu-

man AD patients and AD transgenic mice have found evidence for colocalization of Aβ

with CatD, an aspartyl protease involved in lysosomal protein degradation (Faust et al.,

1985; D’Andrea et al., 2001; Youmans et al., 2012). Furthermore, neuronal cell culture

experiments indicated the presence of Aβ in late endosomes (Runz et al., 2002). As

APP processing is not required to generate Aβ in TBA42 mice, any Aβ found in the
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endosomal/lysosomal system may represent a pool of secreted peptide that underwent

intracellular uptake through unknown mechanisms (Mohamed et al., 2011).

To determine if Aβ accumulates in endosomal/lysosomal structures in TBA42 mice,

additional double-labeling experiments were performed. Aβ colocalized with the late

endosomal marker Vti1b. In addition to late endosomes, Vti1b labels trans-Golgi com-

partments (Kreykenbohm et al., 2002). However, the lack of colocalization between Syn16

and Aβ suggests that the Vti1b/Aβ positive compartments seen in TBA42 mice are en-

dosomal in origin. The endosomal/lysosomal localization of intraneuronal Aβ in TBA42

mice was further confirmed using a CatD antibody. Colocalization with CatD was seen

using antibodies against both pan-Aβ and AβpE.

Aβ accumulation in the endosomal/lysosomal system could result in several conse-

quences. Aβ has been shown to insert into endosomal/lysosomal membranes, thereby

causing leakage and possibly contributing to neuron loss (Ditaranto et al., 2001; Liu et al.,

2010) In addition, Aβ oligomerization is known to occur in MVBs (Takahashi et al., 2004).

AβpE3−x oligomers were recently shown to contribute to neuronal dysfunction both in vitro

and in vivo (Wirths et al., 2010b; Schlenzig et al., 2012). The presence of Aβ/AβpE3−42 in

the endosomal/lysosomal system of TBA42 mice may thus have broad pathophysiological

implications that remain to be elucidated.

4.1.3 Age-dependent increase in gliosis in TBA42 mice

Under physiological conditions, astrocytes act as “housekeeping”cells in the CNS. They

recycle neurotransmitters, maintain local ion concentrations, remove waste and offer gen-

eral metabolic support to neurons. When neuronal injury occurs, oxidative stressors

accumulate. In response, astrocytes display a more ramified morphology and upregulate

GFAP expression, thereby becoming “reactive”(Li et al., 2011).

Given the extensive neurodegeneration in AD, it is not surprising that activated as-

trocytes are an early, prominent feature. They associate closely with neuritic plaques and

may contribute to the evolution of AD pathology in human patients (Pike et al., 1995b).

In AD mouse models, reactive astrocytes are also affiliated with extracellular Aβ deposits.

The amount of gliosis typically increases linearly with plaque burden, as observed in the

PDAPP, Tg2576 and 5XFAD mouse models (Games et al., 1995; Hsiao et al., 1996; Oakley

et al., 2006).

TBA42 mice develop an age-dependent change in astrocyte activation without clas-

sical neuritic plaque deposition. GFAP levels in the hippocampal CA1 region increased

noticeably between the ages of 3 and 12 months (see Fig. 3.6). This astrocyte activation
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occurred in the vicinity of Aβ accumulations. In contrast, gliosis in the hippocampal CA1

region peaks in 3-month-old Hom TBA2.1 mice and declines with age. This period of

astrocyte activity corresponds tightly to Aβ/AβpE deposition and measurable neuron loss

(Alexandru et al., 2011). Given these findings in the Hom TBA2.1 model, the progressive

gliosis present in TBA42 mice may be indicative of on-going neurodegeneration. However,

stereological methods should be employed to confirm this assumption.

The correlation between Aβ aggregates and GFAP staining suggests that Aβ itself

directly impacts the astrocyte profile seen in the Hom TBA2.1 and TBA42 models. Stud-

ies of AD brain revealed that astrocytes preferentially localize to extracellular deposits

consisting of N-terminally truncated Aβ (Thal et al., 2000). Once surrounding these

aggregates, astrocytes may participate in Aβ degradation (Wyss-Coray et al., 2003).

The prevalence of proteolytic-resistant AβpE in Hom TBA2.1 and TBA42 mice, however,

might impede this beneficial astrocyte function (Russo et al., 2002). Furthermore, the

presence of AβpE-stabilized oligomers might cause astrocytes to adopt a more damaging

pro-inflammatory profile (White et al., 2005; D’Arrigo et al., 2009).

Taken together, these observations suggest that the composition of the Aβ deposits

found in TBA42 mice might promote a more aggressive astrocyte phenotype, thereby

aggravating neuropathology.

4.1.4 Age-dependent motor deficits and weight loss in TBA42

mice

AD is characterized by a host of symptoms aside from memory impairment. Among

them are weight loss and motor dysfunction. Decreased body mass is commonly observed

in end-stage AD patients (Tamura et al., 2007). Similarly, 12-month-old TBA42 mice

exhibited reduced weight relative to WT controls. Weight loss is also seen in other AD

mouse models, such as the 5XFAD and TASTPM mice (Pugh et al., 2007; Jawhar et al.,

2012). Hom TBA2.1 mice experience slower weight gain from the age of 2 months, while

TBA2 mice were generally smaller than WT controls (Wirths et al., 2009; Alexandru

et al., 2011). Given these findings, weight loss appears to correlate with overall phenotype

severity in the TBA and other transgenic mouse models.

Motor deficits are a less commonly recognized feature of AD. They can appear early

in the disease, affecting over 10% of AD patients at diagnosis (Scarmeas et al., 2004).

Prospective studies revealed that poor motor performance is affiliated with an increased

risk of AD (Wang et al., 2006). Motor dysfunction is also indicative of the speed of disease

progression. Disturbed gait and rigidity can help to distinguish rapidly-progressing AD
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from cases that evolve more slowly (Schmidt et al., 2010).

TBA42 mice displayed their first signs of motor disturbance at the age of 6 months.

The inverted grip hang revealed impaired vestibular function and muscle weakness at

this time point (Erbel-Sieler et al., 2004). Motor symptoms worsened with age. Twelve-

month-old TBA42 mice exhibited deficits in the balance beam and string suspension, and

inverted grip hang performance continued to decline. These results are in line with the

motor phenotype observed in both TBA2 and Hom TBA2.1 mice (Wirths et al., 2009;

Alexandru et al., 2011). However, the deficits shown by TBA42 mice are less severe, likely

due to the milder underlying pathology.

An age-dependent decline in motor ability is not unique to the TBA mouse models.

Motor impairments have been observed in 5XFAD, APP/PS1 KI and Tg2576 mice, among

other AD transgenic lines (Lalonde et al., 2003b; Wirths et al., 2008; Seo et al., 2010;

Jawhar et al., 2012). In these cases, motor deficits correlate with the presence of a

clasping phenotype. On a neuropathological level, motor problems are associated with

axonopathy, neuron loss and marked amyloid pathology in the spinal cord (Bayer et al.,

2008; Seo et al., 2010; Jawhar et al., 2012).

Motor function is coordinated by a variety of brain regions, including cortical motor

areas, the basal ganglia, cerebellum and spinal cord (Lalonde and Strazielle, 2007). As

a result, neuron loss or disrupted connections in any of these locations can cause motor

impairment. Administering the tail suspension test to TBA42 and Hom TBA2.1 mice

did not provoke the clasping phenotype observed in other AD mouse models. Instead,

the mice presented with hindlimb rigidity and tremors. This phenotype is characteristic

of upper rather than lower motor neuron loss (Mayer, 1997). Mice with deteriorating

spinal motor neurons, such as the P301S tau transgenic mouse model, experience muscle

atrophy and progressive paralysis (Allen et al., 2002; Yoshiyama et al., 2007). Lack of

such a phenotype in TBA42 and Hom TBA2.1 mice further suggests that the observed

motor impairments originate in higher motor regions.

In summary, TBA42 mice exhibit motor impairments comparable to those seen in

human AD patients and some AD mouse models. However, the tremor and rigidity

present in this model imply that these deficits are caused by the dysfunction of motor

neurons outside of the spinal cord.

4.1.5 Age-dependent working memory deficits in TBA42 mice

The progressive cognitive impairment in AD ultimately affects multiple memory do-

mains, including working memory. Complex connections between regions of the prefrontal
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cortex and the hippocampus are necessary to maintain working memory in human subjects

(Linden, 2007). In rodents, working memory relates to spatial search strategies needed

for foraging in the wild (Dember and Fowler, 1958). Spontaneous alternation tasks are

commonly used to evaluate working memory in mice. These tests rely on a mouse’s innate

exploratory tendencies to drive their movement through multi-arm mazes. Importantly,

spontaneous alternation rates are sensitive to lesions in the hippocampus and prefrontal

cortex, making them ideal for detecting memory impairments relevant to AD pathology

(Lalonde, 2002).

Age-dependent changes in spontaneous alternation are variably found in transgenic

AD mouse models. Decreased alternation rates have been observed in Tg2576, 5XFAD

and APP/PS1 mice (Hsiao et al., 1996; Holcomb et al., 1998; Oakley et al., 2006; Jawhar

et al., 2012). Conversely, the APPswe + PS1/DeltaE9 model displayed no such phenotype

(Lalonde et al., 2004). Differences in transgene promoter, transgene expression levels, and

strain background can partially account for such behavioral variability (Lassalle et al.,

2008; Philipson et al., 2010).

Deficits in working memory were observed in 12-month-old TBA42 mice using the

cross maze. Alternation rates in the Y-maze were unchanged between TBA42 mice and

WT controls at all of the ages evaluated. The discrepancy between the cross maze and

Y-maze data likely relates to the differences in maze structure. The cross maze consists

of four arms instead of three, making it a more complex task and thus better able to

detect subtle deficits. Notably, the number of arm entries made by TBA42 mice in both

mazes did not differ significantly from WT levels. This finding indicates that the decrease

in spontaneous alternation rate observed in 12-month-old mice reflects working memory

impairment rather than motor dysfunction.

The prominent hippocampal pathology found in TBA42 mice may account for the ob-

served working memory deficits; both intraneuronal Aβ and robust gliosis were present in

12-month-old mice. Similarly, ArcAβ mice show impaired Y-maze performance at an age

when only intraneuronal Aβ accumulations are present (Knobloch et al., 2007). Soluble,

extracellular forms of AβpE might also contribute to the TBA42 phenotype. Perisynaptic

AβpE aggregates have been detected in β-APP mice at an age when behavioral impair-

ments begin to manifest (Mandler et al., 2011). Furthermore, AβpE3−42 oligomers were

found to be potent inhibitors of LTP in hippocampal slices (Schlenzig et al., 2012).

In conclusion, TBA42 mice develop age-dependent deficits in working memory, thereby

replicating one of the cognitive features of AD. Previous studies suggest that the hip-

pocampal intraneuronal Aβ present in this model, and potentially soluble forms of AβpE,

might cause this phenotype.
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4.1.6 Decreased anxiety and altered exploratory activity in TBA42

mice

Anxiety and disinhibition are two symptoms at opposite ends of the spectrum of behav-

ioral and psychological changes accompanying AD. Certain AD patients may be severely

withdrawn due to anxiety, while others may exhibit socially unacceptable behavior char-

acteristic of disinhibition (Chung and Cummings, 2000; Lyketsos et al., 2002). Anxiety

levels in mice can be measured using the elevated plus maze. More time spent in the

open arms of the maze indicates reduced anxiety and disinhibition, while more time spent

in the closed arms signifies enhanced anxiety. As measured by the elevated plus maze,

AD mouse models display a range of anxiety levels. Tg2576, APP/PS1 KI, APPswe +

PS1/DeltaE9 and 5XFAD mice all exhibit reduced anxiety tendencies (Lalonde et al.,

2003a, 2004; Cotel et al., 2010; Jawhar et al., 2012). In contrast, anxiety levels are in-

creased or unchanged in the APPSwe + PS1A246E and APP23 models (Lalonde, 2002;

Puoliväli et al., 2002).

TBA42 mice spent more time in the open arms of the elevated plus maze beginning

from the age of three months. This phenotype remained constant as the mice aged,

thereby demonstrating a stable reduction in anxiety. Altered connectivity between the

hippocampus, septum and amygdala have all been linked to changes in anxiety levels

(Lalonde et al., 2012). Evidence suggests that the ventral hippocampus may be a more

critical determinant of elevated plus maze behavior than the amygdala (Bannerman et al.,

2004). Supporting the findings with TBA42 mice, AβpE3 oligomers have also been shown

to influence anxiety behaviors. Passive vaccination of 5XFAD mice with an antibody

specific for low molecular weight AβpE3 oligomers stabilized the age-dependent decrease

in anxiety typically found in this model (Wirths et al., 2010c). Given that Aβ/AβpE

pathology is already present in the hippocampi of 3-month-old TBA42 mice, alterations

in hippocampal function could be a plausible cause of the observed decrease in anxiety.

The open field serves as a measure of exploratory drive and motor behavior in mice

(Archer, 1973). As with the elevated plus maze, a variety of phenotypes have been recorded

in transgenic AD mouse models using this task. Some models, such as the APP23, display

hypoactivity in the open field; others, like the Tg2576, are hyperactive (Lalonde, 2002;

Deacon et al., 2009). TBA42 mice showed no differences in open field activity relative

to WT controls. However, the rearing behavior of TBA42 mice was already significantly

reduced from the age of 3 months. A similar phenotype has been observed in the APP/PS1

KI mice (Wirths et al., 2008). Since APP/PS1 KI mice traveled the same distance as WT

mice while in the open field, the authors suggested that altered rearing behavior reflected
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impaired motor activity. Alternatively, expression of a dominant negative cadherin protein

in cortical and hippocampal neurons also decreases rearing behavior without altering

exploratory activity (Edsbagge et al., 2004). Taken together, these findings suggest that

the rearing phenotype observed in TBA42 mice could reflect either an early manifestation

of motor dysfunction or changes in hippocampal cytoarchitecture.

In conclusion, the current studies revealed that TBA42 mice possess a disinhibition

phenotype similar to that seen in AD patients. Additionally, the decreased rearing be-

havior observed in the open field might serve as an early indicator of pathological changes

in these mice.

4.1.7 Conclusions of Project I

Based on the results of the current work:

• Heterozygous TBA42 mice recapitulated aspects of the Aβ/AβpE aggregation and

astrocytosis seen in TBA2 and Hom TBA2.1 mice without producing an early, de-

bilitating phenotype.

• Intraneuronal Aβ accumulations in TBA42 mice occurred in pathologically-relevant

intracellular compartments.

• Age-dependent deficits in motor function and working memory were observable in

TBA42 mice.

• Reduced anxiety and decreased rearing behavior were identified in TBA42 mice;

they represented the earliest and most persistent phenotypic changes.

• The milder underlying pathology and behavioral deficits present in TBA42 mice

make this model suitable for further transgenic studies.
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4.2 Project II: Exploring the pyroglutamate-modified

amyloid beta seeding hypothesis using the FAD42

mouse model

In vitro and in vivo studies have demonstrated that QC catalyzes the formation of

AβpE (Cynis et al., 2008; Schilling et al., 2008b; Alexandru et al., 2011; Jawhar et al.,

2011a). Manipulation of QC through either pharmacological or genetic means effectively

ameliorates cognitive deficits and reduces pathology in certain AD mouse models (Schilling

et al., 2008b; Jawhar et al., 2011a). In line with these findings, ectopic overexpression

of hQC increases AβpE levels, enhances Aβ deposition and aggravates behavioral impair-

ments in 5XFAD mice (Jawhar et al., 2011a). However, QC has targets other than Aβ.

Overexpression of QC could affect its activity toward these substrates, thereby influencing

the phenotype observed in 5XFAD/hQC mice.

To avoid this confounding factor, we aimed to increase AβpE3−42 levels without relying

on QC overexpression. The previous project showed that TBA42 mice are a viable model

for exploring AβpE3−42 toxicity. The objective of the current study was to examine the

pathological and behavioral consequences of enhanced AβpE3−42 production by crossing

TBA42 mice and 5XFAD mice to produce the FAD42 mouse model.

4.2.1 Enhanced behavioral deficits in FAD42 mice

In previous work from our lab, 6-month-old 5XFAD/hQC mice demonstrated impair-

ments in several behavioral domains. Relative to 5XFAD single transgenics, 5XFAD/hQC

mice displayed worse performance in the balance beam, string suspension, Y-maze and

cross maze. These changes correlated directly with increased levels of AβpE3−x in protein

extracts from 5XFAD/hQC mouse brain (Jawhar et al., 2011a). Normally, 5XFAD mice

exhibit no abnormalities in string suspension, balance beam or Y-maze performance at 6

months of age (Jawhar et al., 2011a, 2012). The sudden appearance of these impairments,

plus the exacerbation of preexisting deficits in the cross maze, thus revealed how increased

levels of AβpE3−x can enhance underlying pathology.

The data of Jawhar et al. also suggest that minor deficits may be present in single

transgenic hQC mice (Jawhar et al., 2011a). If this is the case, then hQC overexpression

might influence the phenotype of 5XFAD/hQC mice independent of AβpE3−x production.

However, since no direct comparisons were made between the performance of hQC mice

and WT controls, this observation requires further experimental validation.
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In agreement with our findings in the 5XFAD/hQC mice, behavioral deficits were

identified in 6-month-old FAD42 mice relative to TBA42, 5XFAD and WT controls. The

impairments manifested as worsened performance in the balance beam and elevated plus

maze. The specificity of these deficits likely relates to the particular pattern of Aβ accu-

mulation observed in TBA42 mice (see Section 3.1.2). This is in direct contrast to the

situation in 5XFAD/hQC mice, where hQC and APP expression overlap throughout the

brain (Jawhar et al., 2011a).

Taken together, the behavioral data from FAD42 mice highlight the potent toxicity of

AβpE3−42. Despite the region-specific overexpression of AβpE3−42, the TBA42 transgene

is sufficient to aggravate the phenotype found in 5XFAD mice, a model with aggressive

amyloid pathology.

4.2.2 Minor alterations in the amyloid beta profile of FAD42

mice as determined by IP/MS

Given the results of our behavioral tests, we wanted to explore precisely how additional

AβpE3−42 alters amyloid pathology in FAD42 mice. AβpE displays enhanced aggregation

kinetics and speeds the sedimentation of other Aβ species in vitro (He and Barrow, 1999;

Kuo et al., 1998; Schilling et al., 2006; Schlenzig et al., 2009). We reasoned that such

a phenomenon occurring in vivo might alter the pattern of Aβ isoforms isolated from

FAD42 brain.

To test this hypothesis, we employed IP/MS to analyze the Aβ species found in TBA42,

5XFAD and FAD42 mice. Using antibodies against total Aβ, Aβ1−42 was identified as the

dominant isoform in the brains of 5XFAD mice. This result is in line with previous studies

reporting the overproduction of Aβ1−42 in this model (Oakley et al., 2006; Jawhar et al.,

2012). Minor peaks representing Aβ1−40 and N-terminally truncated species of Aβ1−42

were also observed. A similar pattern of Aβ isoforms was found in FAD42 mice.

Using the N-terminal-specific antibody 1-57, AβpE3−42 and Aβ3−42 were found in the

brains of TBA42, 5XFAD and FAD42 mice. In all cases, AβpE3−42 was the dominant iso-

form. As TBA42 mice initially produce Aβ3Q−42, the presence of unmodified, N-truncated

Aβ3−42 peptide was not unexpected. The ratio of the Aβ3−42 and AβpE3−42 peaks suggests

that most Aβ in TBA42 mice undergoes pyroglutamate modification. However, it cannot

be excluded that unmodified Aβ3−42 also contributes to the observed pathology in this

model.

Ultimately, the only difference between the Aβ isoform patterns in the 5XFAD and

FAD42 models was the absence of a minor AβpE3−40 peak in FAD42 mice. MS is a quali-
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tative rather than a quantitative measurement, and ionization efficiency can vary between

different peptides. Overproduction of Aβ1−42 has been associated with the suppression of

AβpE3−x signals in previous MS experiments (Piccini et al., 2005). Such a phenomenon

may also account for the lack of AβpE3−40 signal in FAD42 mouse brain. Nevertheless,

a significant precipitation of AβpE3−40 in 5XFAD mice alone cannot be ruled out. It

also cannot be excluded that the different levels of AβpE variants observed between the

5XFAD and FAD42 spectra result from highly aggregated AβpE3−x in FAD42 mice. An

overly compact Aβ aggregation state could potentially interfere with the binding of the

1-57 antibody, thus preventing the efficient extraction of some forms of AβpE for IP/MS

analysis.

Despite not finding a dramatic difference in the Aβ isoform pattern between 5XFAD

and FAD42 mice, our data illustrate a unique feature of the 5XFAD model. N-terminally

modified forms of Aβ occur in low amounts in many AD transgenic mice (Kawarabayashi

et al., 2001; Kuo et al., 2001; Kalback et al., 2002). This contrasts the situation in human

AD patients, where a variety of N-truncated Aβ species have been observed (Rüfenacht

et al., 2005; Güntert et al., 2006; Portelius et al., 2010). It has therefore been hypothesized

that a lack of these N-terminally modified Aβ species might partially account for the

difference in plaque solubility and NFT pathology observed between AD patients and

transgenic mice (Kawarabayashi et al., 2001; Kuo et al., 2001; Kalback et al., 2002). Mice

that possess such isoforms, like the APP/PS1 KI mouse, often exhibit neuron loss and

more aggressive pathology (Casas et al., 2004).

The prevalence of AβpE and other N-terminally truncated forms of Aβ in 5XFAD

and FAD42 mice might account for their severe phenotypes. However, targeted removal

of low-molecular weight AβpE3 oligomers using passive immunization produces beneficial

therapeutic effects in 5XFAD mice (Wirths et al., 2010c). These data imply that a selective

alteration of AβpE levels is sufficient to affect pathology despite the presence of other N-

terminally modified Aβ isoforms.

4.2.3 Altered levels of pyroglutamate-modified amyloid beta and

increased plaque pathology in FAD42 mice

To confirm the seeding effect of AβpE in vivo, the cortical plaque loads of 5XFAD and

FAD42 mice were compared. Prior to this, it was established that Aβ could be found

in overlapping neuronal populations in TBA42 and 5XFAD mice. Immunofluorescent

double-labeling indicated that both 5XFAD and TBA42 mice possess intraneuronal Aβ

in cortical neurons. In vivo microdialysis experiments have shown that local concentra-

104



Chapter 4. Discussion

tions of Aβ in the interstitial fluid are critical to plaque development (Yan et al., 2009;

Bero et al., 2011). Furthermore, cell culture studies suggested that aggregation of Aβ

in intracellular compartments, followed by the release of these aggregates extracellularly,

may also spur plaque formation (Hu et al., 2009; Friedrich et al., 2010). The presence of

Aβ in overlapping cortical neuron populations in the TBA42 and 5XFAD mouse mod-

els therefore ensures that their respective Aβ pools have an opportunity to interact and

increase plaque load.

It was previously demonstrated in 5XFAD/hQC mice that elevated AβpE levels in-

crease cortical plaque load (Jawhar et al., 2011a). Accordingly, lowering AβpE levels

through QC inhibition, antibody treatment or QC KO is sufficient to ameliorate plaque

pathology (Schilling et al., 2008b; Wirths et al., 2010c; Jawhar et al., 2011a). In line

with these findings, the ratio of AβpE3−x to Aβ1−x plaque area was significantly higher

in FAD42 mice relative to 5XFAD controls. No increase in intraneuronal Aβ staining

was seen in FAD42 mice. It is therefore unlikely that the observed change in plaque load

is attributable to the detection of more intraneuronal aggregates. The average ratio of

Aβx−42 to Aβ1−x plaque area was also elevated in FAD42 mice. However, a high degree

of variation in the FAD42 cohort prevented this measure from reaching statistical signif-

icance. Taken together, these data confirm that AβpE3−x can seed amyloid deposition in

vivo.

Analysis of TBS- and SDS brain fractions revealed significantly higher levels of SDS-

soluble AβpE3−x in the FAD42 model relative to both TBA42 and 5XFAD mice. The

extent of this increase supports the seeding of amyloid deposition observed earlier; absolute

amounts of AβpE3−x in FAD42 mice were more than just a simple sum of the TBA42 and

5XFAD levels. FAD42 mice also displayed a trend toward increased amounts of AβpE3−x

in the TBS-soluble fraction. The lack of change in the levels of TBS and SDS-soluble

Aβx−42 in FAD42 mice is likely due to Aβx−42 being over 1000 times more abundant than

AβpE3−x. Such a discrepancy was previously observed in 5XFAD/hQC mice (Jawhar

et al., 2011a). This finding suggests that a subtle elevation of AβpE3−x might have limited

ability to increase total Aβ aggregation if there is already a saturation effect caused by

Aβx−42.

Relative amounts of different Aβ species are of pathological importance. It was re-

cently shown that the relative ratio of Aβ1−42 to Aβ1−40, rather than absolute peptide

amount, is a key determinant of dynamic Aβ fibrillization and the stabilization of toxic

oligomeric intermediates (Kuperstein et al., 2010). Along these lines, biochemical extrac-

tion experiments suggested that an increased ratio of water-soluble AβpE3−42 to Aβ1−42

is associated with a more severe phenotype in AD (Piccini et al., 2005, 2007). Given
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these data, the increase in TBS-soluble AβpE3−x observed in FAD42 mice may still have

a pathological impact since TBS-soluble Aβx−42 is unchanged from 5XFAD levels.

4.2.4 Elevated glutaminyl cyclase activity in FAD42 mice

Due to the tight correlations between AβpE formation and QC, alterations in QC

activity might accompany the pathology observed in FAD42 mice. To determine if this

was the case, a QC activity assay was performed on brain lysates from WT, TBA42,

5XFAD and FAD42 mice. In line with the amyloid pathology found in TBA42, 5XFAD

and FAD42 mice, QC activity in all three models was significantly elevated relative to

WT controls. FAD42 mice displayed a non-significant trend toward increased QC activity

relative to TBA42 and 5XFAD mice. Along these lines, increased levels of QC mRNA and

protein have been observed in the brains of AD patients. These elevations correlated with

both disease stage and AβpE levels (Schilling et al., 2008c). Furthermore, QC activity

corresponded with AβpE levels in Hom TBA2.1 mice (Alexandru et al., 2011). Together,

these data support a close association between AβpE formation and the pathophysiological

upregulation of QC activity.

The exact cause of increased QC activity is presently unknown. QC has been found

in neurons and astrocytes and can be secreted from both cell types (Hartlage-Rubsamen

et al., 2009; Hartlage-Rübsamen et al., 2011b; Schilling et al., 2011). Under normal physi-

ological conditions, QC protein is undetectable in glial cells in the mouse brain (Hartlage-

Rubsamen et al., 2009). However, there is evidence suggesting that QC expression can be

induced in astrocytes in response to inflammatory stimulation (Iwata et al., 2010). Like-

wise, QC activity is elevated in peripheral monocytes after lipopolysaccharide treatment,

but this occurs in the absence of changes in QC mRNA or protein levels (Chen et al.,

2012).

In summary, these findings demonstrate that elevated activity of endogenous QC ac-

companies the pathology of TBA42, 5XFAD and FAD42 mice. This increase in QC

activity could result from a combination of several factors, such as higher substrate levels

or inflammation-induced increases in QC expression/activity in glial cells.
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4.2.5 Conclusions of Project II

Based on the results of the current work:

• Addition of AβpE3−42 into 5XFAD mice via the TBA42 transgene produced an ag-

gravated behavioral phenotype in the resulting FAD42 mouse model.

• The heterogeneity of N-terminally truncated Aβ peptides in 5XFAD mice was

demonstrated for the first time using IP/MS. Furthermore, AβpE3−42 was identi-

fied as a major Aβ species in TBA42 mice.

• Elevation of AβpE3−42 without ectopic QC overexpression enhanced cortical plaque

load and raised levels of TBS and SDS soluble AβpE3−x in FAD42 mice.

• Increased QC activity in transgenic AD mouse models suggests a relation between

endogenous QC and pathological processes, such as inflammation.
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4.3 Project III: Generation and characterization of

the TBA83 mouse model

A critical flaw of most transgenic AD mouse models is their reliance on artificial

combinations of APP/PS1 mutations to recapitulate certain aspects of AD pathology.

Direct, moderate expression of a particular Aβ species in vivo may therefore create a

more physiologically relevant AD model. Despite being one of the major Aβ isoforms in

AD brain, little is known about the individual characteristics of Aβ4−42 (Portelius et al.,

2010). The objective of the present study was to examine the effects of Aβ4−42 expression

in vivo by generating a transgenic mouse model that exclusively produces this Aβ isoform.

4.3.1 Age-dependent gliosis and amyloid beta accumulation in

TBA83 mice

As with the TBA42, TBA2 and Hom TBA2.1 mouse models, TBA83 mice rely on a

TRH fusion peptide to route Aβ through the secretory pathway. Following liberation of

the TRH signal peptide, Aβ4−42 is released into the trans-Golgi and secretory granules in

its final form. This is in contrast to TBA42/TBA2 mice, which require QC activity to

produce their desired Aβ product, AβpE3−42 (Wirths et al., 2009; Alexandru et al., 2011).

As a result, the TBA42/TBA2 mice accumulate two different Aβ isoforms. TBA83 mice

therefore represent a “cleaner”AD mouse model since they generate only one Aβ species.

Aside from TBA42/TBA2 and TBA83 mice, other transgenic mouse models have been

designed to exclusively generate certain Aβ isoforms without mutant APP/PS1 overex-

pression. Many of these models directly express Aβ1−42, such as the G2 mice, APP48 mice,

and BRI-Aβ42 mice (LaFerla et al., 1995; McGowan et al., 2005; Abramowski et al., 2012).

G2 and APP48 mice promote the specific intraneuronal accumulation of Aβ1−42, and both

models demonstrate its intracellular toxicity. Extracellular Aβ deposits are largely ab-

sent from these mice (LaFerla et al., 1995; Abramowski et al., 2012). In contrast, the

BRI-Aβ42 mice express a fusion construct of the BRI protein and Aβ1−42, resulting in

efficient secretion of Aβ1−42 into the extracellular space. Consistent with high extracel-

lular concentrations of Aβ1−42, BRI-Aβ42 mice develop age-dependent plaque pathology.

Intraneuronal Aβ accumulations, however, are not found in this model (McGowan et al.,

2005).

TBA83 mice developed both intracellular and extracellular Aβ deposits. The expres-

sion of Aβ4−42 in TBA83 mice occurred in a region-specific manner consistent with a

transgene driven by the murine Thy1 promoter (Caroni, 1997). Unlike TBA42 mice,
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TBA83 mice displayed minimal intraneuronal Aβ pathology in the CA1 region of the

hippocampus. Instead, they primarily developed extracellular Aβ granules which grew as

the mice aged. This finding suggests that Aβ4−42 is being efficiently secreted. Similarly,

spinal cord pathology increased in TBA83 mice between the ages of 4 and 12 months,

with larger numbers of both intracellular and extracellular Aβ deposits found in older

mice. Age-dependent gliosis was also present in regions with Aβ accumulation. However,

the increase in astrocyte activation observed by GFAP staining was comparatively minor

between 4- and 12-month-old TBA83 mice. This finding is in line with the relatively mild

Aβ pathology observed.

The similarities between the Aβ accumulation patterns in TBA42 and TBA83 mice

likely result from the Thy1 promoter and the TRH-fusion constructs utilized in these

models. However, it is possible that the larger extracellular deposits found in TBA83

mice reflect a true difference in the aggregation behavior of AβpE3−42 and Aβ4−42. In

support of this idea, in vitro studies have demonstrated that Aβ4−42 aggregates more

rapidly than Aβ species with longer N-termini (Pike et al., 1995b).

It should also be noted that transgene expression levels determine the pathology ob-

served in AD transgenic mice. For example, the later onset of pathology in heterozygous

TBA2.1/TBA2.2 mice relative to Hom TBA2.1 mice correlates with a lower amount of

AβpE3−42 (Alexandru et al., 2011). It would therefore be intriguing to examine the differ-

ences in transgene expression between TBA42 and TBA83 mice and determine whether

lower levels of Aβ4−42 or AβpE3−42 are more effective at exerting toxicity in vivo.

In summary, TBA83 mice represent a unique AD mouse model that exclusively gen-

erates Aβ4−42 without overexpressing mutated APP/PS1. These mice develop both in-

traneuronal and extracellular Aβ deposits, thereby allowing the behavior of Aβ4−42 to be

examined in different in vivo environments.

4.3.2 Selective deficits in motor function and spatial working

memory in TBA83 mice

To determine if the Aβ4−42 expression found in the TBA83 model resulted in cognitive

impairment, 4-to-12-month-old TBA83 mice were subjected to our standard behavioral

test battery. No changes between TBA83 mice and WT controls were found in mea-

sures of anxiety, general motor activity or working memory. The only significant deficit

observed was impaired performance in the balance beam in 12-month-old TBA83 mice.

Intraneuronal Aβ in spinal cord motor neurons has been correlated with motor perfor-

mance in other AD mouse models (Wirths et al., 2007; Jawhar et al., 2012). Given these
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observations, the Aβ pathology present in the spinal cords of 12-month-old TBA83 mice

might account for their performance in the balance beam.

In light of the hippocampal pathology observed in TBA83 mice, we employed the

MWM to evaluate spatial reference memory. The water maze paradigm is the most widely

used test to assess cognitive impairment in AD mouse models (Duyckaerts et al., 2008).

Lesion studies have demonstrated that the water maze is extremely sensitive to changes

in hippocampal structure (Moser et al., 1995). Furthermore, the connection between

NMDA and alpha-amino-3-hydroxyl-5-methyl-4-isoxazole propionate (AMPA) receptor

function and water maze learning is well established (Liang et al., 1994). Both of these

receptor subtypes participate in the induction and maintenance of LTP, a process critical

for memory formation (Malenka and Bear, 2004).

No differences in the learning curves were observed between 8-9-month-old TBA83

mice and WT controls during the cued and acquisition phases of the MWM. However,

the absence of a clear quadrant preference in the probe trial ultimately revealed a spatial

memory deficit in TBA83 mice. The sparse hippocampal Aβ deposits found in TBA83

mice suggest that soluble Aβ may underlie this memory impairment. A lack of appropriate

ELISA antibodies has currently prevented quantitative measurements of soluble Aβ in

TBA83 mice. Efforts are underway to resolve this issue.

Multiple lines of evidence support a role for soluble Aβ in promoting cognitive dysfunc-

tion in AD transgenic mice. Memory deficits and synaptic changes have been observed

in several AD mouse models before amyloid plaques appear (Holcomb et al., 1998; Hsia

et al., 1999; Mucke et al., 2000). Soluble Aβ-dimers derived from AD brains were shown

to impair LTP in hippocampal slice cultures and affect memory recall when injected in-

traventricularly (Shankar et al., 2008). Along these lines, directly elevating levels of Aβ

oligomers through genetic KO of the Aβ degrading enzyme neprilysin impaired synaptic

plasticity and learning in APP23 mice (Huang et al., 2006).

In conclusion, deficits in motor function and spatial reference memory were identified

in TBA83 mice. A lack of hippocampal Aβ depositions suggests a role for soluble Aβ4−42

in the observed memory dysfunction. However, further studies are required to confirm

this hypothesis.
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4.3.3 Conclusions of Project III

Based on the results of the current work:

• TBA83 mice, a novel transgenic AD mouse model that exclusively produces Aβ4−42,

were successfully generated.

• Region-specific extracellular and intraneuronal Aβ deposits were observed in TBA83

mice, accompanied by mild, age-dependent gliosis.

• Expression of Aβ4−42 in TBA83 mice was sufficient to induce deficits in motor func-

tion and hippocampal-dependent memory. These impairments may result from sol-

uble forms of Aβ4−42, thereby identifying a novel pathological function of this Aβ

isoform.
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Summary

A heterogeneous mixture of amyloid beta (Aβ) isoforms exists in the brains of Alzheimer’s

disease (AD) patients. Despite decades of research, relatively little is known about the

precise contribution of these various Aβ species to the development and progression of

AD. Recent work has identified pyroglutamate-modified amyloid beta (AβpE) as a partic-

ularly abundant and toxic peptide. Transgenic mice designed to specifically overproduce

AβpE exhibit neuron loss and behavioral deficits. Unfortunately, general breeding issues

and the severe pathology found in these models restrict their use for additional transgenic

studies.

In the first project of this thesis, the TBA42 mouse model was generated to overcome

these problems and further explore the consequences of AβpE accumulation in vivo. Using

immunohistochemistry, it was shown that TBA42 mice develop region-specific intraneu-

ronal and extracellular Aβ/AβpE deposits accompanied by progressive gliosis. Decreased

anxiety and altered rearing behavior were the earliest and most persistent behavioral

changes identified in this model. TBA42 mice also displayed age-dependent deficits in

motor performance and working memory. The phenotype observed in the TBA42 model

is comparable to other AβpE-generating transgenic mouse lines. However, the moderate

pathology and behavioral impairments of TBA42 mice make them suitable for further

transgenic experiments.

Numerous studies have explored the therapeutic benefits of reducing AβpE in AD

mouse models. However, few have addressed whether elevating AβpE levels is sufficient to

aggravate ongoing disease processes. Earlier attempts to answer this question relied on the

ectopic overexpression of human glutaminyl cyclase (hQC) in an established AD mouse

model. QC is the primary enzyme responsible for catalyzing the formation of AβpE. Since
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QC has multiple targets, it cannot be excluded that ectopic QC overexpression affected

these other substrates, thereby influencing the results of previous experiments.

To study how an exclusive increase in AβpE affects AD pathology, the TBA42 and

5XFAD mouse models were crossed to produce FAD42 mice for the second project of

this thesis. The 5XFAD mouse model is a well-characterized AD transgenic model with

aggressive amyloid deposition. FAD42 mice exhibited aggravated behavioral deficits com-

pared to 5XFAD and TBA42 mice. ELISA and plaque load measurements also revealed

elevated AβpE in FAD42 mice. These results were accompanied by an increase in endoge-

nous QC activity in FAD42 mouse brain. However, FAD42 mice displayed no changes in

Aβx−42 or other Aβ isoforms, as determined by ELISA and mass spectrometry. In total,

these observations support a key pathogenic role for AβpE in AD and argue for its ability

to seed Aβ deposition.

Aβ4−42 is another major Aβ species in AD brain. Sedimentation studies suggested

that Aβ4−42 displays rapid aggregation kinetics, but nothing is known about the in vivo

toxicity of this peptide. Most transgenic AD mouse models rely on artificial combinations

of mutations to study amyloid pathology. However, the majority of AD patients do not

possess mutations. Direct, moderate expression of a particular Aβ species in vivo may

therefore create a more physiologically relevant AD model.

Given these considerations, the third project of this thesis focused on the creation

of TBA83 mice, a transgenic model which exclusively expresses Aβ4−42. TBA83 mice

exhibited sparse, region-specific intraneuronal and extracellular Aβ deposits and mild

gliosis. In addition, TBA83 mice displayed deficits in motor function and hippocampal-

dependent memory. The lack of severe Aβ deposition in TBA83 mice ultimately suggests

a pathological function for soluble Aβ4−42.

Taken together, the results of this thesis confirm the relevance of AβpE to AD progres-

sion. The pathogenic properties of Aβ4−42 were also identified for the first time in vivo,

warranting further studies of this Aβ isoform.
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